Moving Window Regression: A Novel Approach to Ordinal Regression

Nyeong Ho Shin, Seon Ho Lee, Chang Su Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

A novel ordinal regression algorithm, called moving window regression (MWR), is proposed in this paper. First, we propose the notion of relative rank ($\rho$-rank), which is a new order representation scheme for input and reference instances. Second, we develop global and local relative regressors ($\rho$-regressors) to predict $\rho$-ranks within entire and specific rank ranges, respectively. Third, we refine an initial rank estimate iteratively by selecting two reference instances to form a search window and then estimating the \rho$-rank within the window. Extensive experiments results show that the proposed algorithm achieves the state-of-the-art performances on various benchmark datasets for facial age estimation and historical color image classification. The codes are available at https://github.com/nhshin-mcl/MWR.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages18739-18748
Number of pages10
ISBN (Electronic)9781665469463
DOIs
Publication statusPublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 2022 Jun 192022 Jun 24

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period22/6/1922/6/24

Keywords

  • Face and gestures
  • Machine learning
  • Others
  • Vision applications and systems

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Moving Window Regression: A Novel Approach to Ordinal Regression'. Together they form a unique fingerprint.

Cite this