Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants

Gang Li, Li Wang, Feng Shi, Weili Lin, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Accurate and consistent labeling of longitudinal cortical surfaces is essential to understand the early dynamic development of cortical structure and function in both normal and abnormal infant brains. In this paper, we propose a novel method for simultaneous, consistent, and unbiased labeling of longitudinal dynamic cortical surfaces in the infant brain MR images. The proposed method is formulated as minimization of an energy function, which includes the data fitting, spatial smoothness and temporal consistency terms. Specifically, in the spirit of multi-atlas based label fusion, the data fitting term is designed to integrate adaptive contributions from multi-atlas surfaces, according to the similarity of their local cortical folding with that of the subject surface. The spatial smoothness term is designed to adaptively encourage label smoothness based on the local folding geometries, i.e., also allowing label discontinuity at sulcal bottoms, where the cytoarchitecturally and functionally distinct cortical regions are often divided. The temporal consistency term is further designed to encourage the label consistency between temporal corresponding vertices with similar local cortical folding. Finally, the entire energy function is efficiently minimized by a graph cuts method. The proposed method has been successfully applied to the labeling of longitudinal cortical surfaces of 13 infants, each with 6 serial images scanned from birth to 2 years of age. Both qualitative and quantitative evaluation results demonstrate the validity of the proposed method.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pages58-65
Number of pages8
Volume8149 LNCS
EditionPART 1
DOIs
Publication statusPublished - 2013 Oct 23
Externally publishedYes
Event16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013 - Nagoya, Japan
Duration: 2013 Sep 222013 Sep 26

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 1
Volume8149 LNCS
ISSN (Print)03029743
ISSN (Electronic)16113349

Other

Other16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013
CountryJapan
CityNagoya
Period13/9/2213/9/26

Fingerprint

Atlas
Labeling
Labels
Folding
Smoothness
Data Fitting
Term
Energy Function
Brain
Graph Cuts
Quantitative Evaluation
Entire Function
Discontinuity
Fusion
Fusion reactions
Integrate
Distinct
Geometry
Demonstrate

Keywords

  • Infant cortical surface
  • longitudinal cortical surface labeling

ASJC Scopus subject areas

  • Computer Science(all)
  • Theoretical Computer Science

Cite this

Li, G., Wang, L., Shi, F., Lin, W., & Shen, D. (2013). Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (PART 1 ed., Vol. 8149 LNCS, pp. 58-65). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8149 LNCS, No. PART 1). https://doi.org/10.1007/978-3-642-40811-3_8

Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants. / Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Shen, Dinggang.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8149 LNCS PART 1. ed. 2013. p. 58-65 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8149 LNCS, No. PART 1).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Li, G, Wang, L, Shi, F, Lin, W & Shen, D 2013, Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 1 edn, vol. 8149 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), no. PART 1, vol. 8149 LNCS, pp. 58-65, 16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013, Nagoya, Japan, 13/9/22. https://doi.org/10.1007/978-3-642-40811-3_8
Li G, Wang L, Shi F, Lin W, Shen D. Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 1 ed. Vol. 8149 LNCS. 2013. p. 58-65. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); PART 1). https://doi.org/10.1007/978-3-642-40811-3_8
Li, Gang ; Wang, Li ; Shi, Feng ; Lin, Weili ; Shen, Dinggang. / Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8149 LNCS PART 1. ed. 2013. pp. 58-65 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); PART 1).
@inproceedings{332d168d3a9f4c00a178fbba7e35b7df,
title = "Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants",
abstract = "Accurate and consistent labeling of longitudinal cortical surfaces is essential to understand the early dynamic development of cortical structure and function in both normal and abnormal infant brains. In this paper, we propose a novel method for simultaneous, consistent, and unbiased labeling of longitudinal dynamic cortical surfaces in the infant brain MR images. The proposed method is formulated as minimization of an energy function, which includes the data fitting, spatial smoothness and temporal consistency terms. Specifically, in the spirit of multi-atlas based label fusion, the data fitting term is designed to integrate adaptive contributions from multi-atlas surfaces, according to the similarity of their local cortical folding with that of the subject surface. The spatial smoothness term is designed to adaptively encourage label smoothness based on the local folding geometries, i.e., also allowing label discontinuity at sulcal bottoms, where the cytoarchitecturally and functionally distinct cortical regions are often divided. The temporal consistency term is further designed to encourage the label consistency between temporal corresponding vertices with similar local cortical folding. Finally, the entire energy function is efficiently minimized by a graph cuts method. The proposed method has been successfully applied to the labeling of longitudinal cortical surfaces of 13 infants, each with 6 serial images scanned from birth to 2 years of age. Both qualitative and quantitative evaluation results demonstrate the validity of the proposed method.",
keywords = "Infant cortical surface, longitudinal cortical surface labeling",
author = "Gang Li and Li Wang and Feng Shi and Weili Lin and Dinggang Shen",
year = "2013",
month = "10",
day = "23",
doi = "10.1007/978-3-642-40811-3_8",
language = "English",
isbn = "9783642408106",
volume = "8149 LNCS",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
number = "PART 1",
pages = "58--65",
booktitle = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
edition = "PART 1",

}

TY - GEN

T1 - Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants

AU - Li, Gang

AU - Wang, Li

AU - Shi, Feng

AU - Lin, Weili

AU - Shen, Dinggang

PY - 2013/10/23

Y1 - 2013/10/23

N2 - Accurate and consistent labeling of longitudinal cortical surfaces is essential to understand the early dynamic development of cortical structure and function in both normal and abnormal infant brains. In this paper, we propose a novel method for simultaneous, consistent, and unbiased labeling of longitudinal dynamic cortical surfaces in the infant brain MR images. The proposed method is formulated as minimization of an energy function, which includes the data fitting, spatial smoothness and temporal consistency terms. Specifically, in the spirit of multi-atlas based label fusion, the data fitting term is designed to integrate adaptive contributions from multi-atlas surfaces, according to the similarity of their local cortical folding with that of the subject surface. The spatial smoothness term is designed to adaptively encourage label smoothness based on the local folding geometries, i.e., also allowing label discontinuity at sulcal bottoms, where the cytoarchitecturally and functionally distinct cortical regions are often divided. The temporal consistency term is further designed to encourage the label consistency between temporal corresponding vertices with similar local cortical folding. Finally, the entire energy function is efficiently minimized by a graph cuts method. The proposed method has been successfully applied to the labeling of longitudinal cortical surfaces of 13 infants, each with 6 serial images scanned from birth to 2 years of age. Both qualitative and quantitative evaluation results demonstrate the validity of the proposed method.

AB - Accurate and consistent labeling of longitudinal cortical surfaces is essential to understand the early dynamic development of cortical structure and function in both normal and abnormal infant brains. In this paper, we propose a novel method for simultaneous, consistent, and unbiased labeling of longitudinal dynamic cortical surfaces in the infant brain MR images. The proposed method is formulated as minimization of an energy function, which includes the data fitting, spatial smoothness and temporal consistency terms. Specifically, in the spirit of multi-atlas based label fusion, the data fitting term is designed to integrate adaptive contributions from multi-atlas surfaces, according to the similarity of their local cortical folding with that of the subject surface. The spatial smoothness term is designed to adaptively encourage label smoothness based on the local folding geometries, i.e., also allowing label discontinuity at sulcal bottoms, where the cytoarchitecturally and functionally distinct cortical regions are often divided. The temporal consistency term is further designed to encourage the label consistency between temporal corresponding vertices with similar local cortical folding. Finally, the entire energy function is efficiently minimized by a graph cuts method. The proposed method has been successfully applied to the labeling of longitudinal cortical surfaces of 13 infants, each with 6 serial images scanned from birth to 2 years of age. Both qualitative and quantitative evaluation results demonstrate the validity of the proposed method.

KW - Infant cortical surface

KW - longitudinal cortical surface labeling

UR - http://www.scopus.com/inward/record.url?scp=84885719807&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84885719807&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-40811-3_8

DO - 10.1007/978-3-642-40811-3_8

M3 - Conference contribution

SN - 9783642408106

VL - 8149 LNCS

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 58

EP - 65

BT - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

ER -