Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers

Fang Qian, Yat Li, Silvija Gradečak, Hong Gyu Park, Yajie Dong, Yong Ding, Zhong Lin Wang, Charles M. Lieber

Research output: Contribution to journalArticle

582 Citations (Scopus)

Abstract

Rational design and synthesis of nanowires with increasingly complex structures can yield enhanced and/or novel electronic and photonic functions. For example, Ge/Si core/shell nanowires have exhibited substantially higher performance as field-effect transistors and low-temperature quantum devices compared with homogeneous materials, and nano-roughened Si nanowires were recently shown to have an unusually high thermoelectric figure of merit. Here, we report the first multi-quantum-well (MQW) core/shell nanowire heterostructures based on well-defined III-nitride materials that enable lasing over a broad range of wavelengths at room temperature. Transmission electron microscopy studies show that the triangular GaN nanowire cores enable epitaxial and dislocation-free growth of highly uniform (InGaN/GaN)(n) quantum wells with n≤3, 13 and 26 and InGaN well thicknesses of 1-3nm. Optical excitation of individual MQW nanowire structures yielded lasing with InGaN quantum-well composition-dependent emission from 365 to 494nm, and threshold dependent on quantum well number, n. Our work demonstrates a new level of complexity in nanowire structures, which potentially can yield free-standing injection nanolasers.

Original languageEnglish
Pages (from-to)701-706
Number of pages6
JournalNature Materials
Volume7
Issue number9
DOIs
Publication statusPublished - 2008 Sep

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers'. Together they form a unique fingerprint.

  • Cite this

    Qian, F., Li, Y., Gradečak, S., Park, H. G., Dong, Y., Ding, Y., Wang, Z. L., & Lieber, C. M. (2008). Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Materials, 7(9), 701-706. https://doi.org/10.1038/nmat2253