Abstract
Rational design and synthesis of nanowires with increasingly complex structures can yield enhanced and/or novel electronic and photonic functions. For example, Ge/Si core/shell nanowires have exhibited substantially higher performance as field-effect transistors and low-temperature quantum devices compared with homogeneous materials, and nano-roughened Si nanowires were recently shown to have an unusually high thermoelectric figure of merit. Here, we report the first multi-quantum-well (MQW) core/shell nanowire heterostructures based on well-defined III-nitride materials that enable lasing over a broad range of wavelengths at room temperature. Transmission electron microscopy studies show that the triangular GaN nanowire cores enable epitaxial and dislocation-free growth of highly uniform (InGaN/GaN)(n) quantum wells with n≤3, 13 and 26 and InGaN well thicknesses of 1-3nm. Optical excitation of individual MQW nanowire structures yielded lasing with InGaN quantum-well composition-dependent emission from 365 to 494nm, and threshold dependent on quantum well number, n. Our work demonstrates a new level of complexity in nanowire structures, which potentially can yield free-standing injection nanolasers.
Original language | English |
---|---|
Pages (from-to) | 701-706 |
Number of pages | 6 |
Journal | Nature Materials |
Volume | 7 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2008 Sept |
ASJC Scopus subject areas
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering