TY - GEN
T1 - Multi-task sparse classifier for diagnosis of MCI conversion to AD with longitudinal MR images
AU - Liu, Manhua
AU - Suk, Heung Il
AU - Shen, Dinggang
PY - 2013
Y1 - 2013
N2 - Mild cognitive impairment (MCI) patients are at a high risk of turning into Alzheimer's disease (AD) within years. But it is known that not all MCI patients will progress to AD. Therefore, it is of great interest to accurately diagnose whether a MCI patient will convert to AD (namely MCI converter; MCI-C) or not (namely MCI non-converter; MCI-NC), for early diagnosis and proper treatment. In this paper, we propose a multi-task sparse representation classifier to discriminate between MCI-C and MCI-NC utilizing longitudinal neuroimaging data. Unlike the previous methods that explicitly combined the longitudinal information in a feature domain, thus requiring the same number of measurements in time, the proposed method is not limited to the availability of the data. Specifically, by means of multi-task learning, we impose a group constraint that the same training samples, ideally belonging to the same class, are used to represent the longitudinal feature vectors across time points. Then we utilize a sparse representation classifier for label decision. From a machine learning perspective, the proposed method can be considered as the combination of the generative and discriminative methods, which are known to be effective in classification enhancement. In our experiments on magnetic resonance brain images of 349 MCI subjects (164 MCI-C and 185 MCI-NC) from ADNI database, we demonstrate the validity of the proposed method, which also outperforms the competing methods.
AB - Mild cognitive impairment (MCI) patients are at a high risk of turning into Alzheimer's disease (AD) within years. But it is known that not all MCI patients will progress to AD. Therefore, it is of great interest to accurately diagnose whether a MCI patient will convert to AD (namely MCI converter; MCI-C) or not (namely MCI non-converter; MCI-NC), for early diagnosis and proper treatment. In this paper, we propose a multi-task sparse representation classifier to discriminate between MCI-C and MCI-NC utilizing longitudinal neuroimaging data. Unlike the previous methods that explicitly combined the longitudinal information in a feature domain, thus requiring the same number of measurements in time, the proposed method is not limited to the availability of the data. Specifically, by means of multi-task learning, we impose a group constraint that the same training samples, ideally belonging to the same class, are used to represent the longitudinal feature vectors across time points. Then we utilize a sparse representation classifier for label decision. From a machine learning perspective, the proposed method can be considered as the combination of the generative and discriminative methods, which are known to be effective in classification enhancement. In our experiments on magnetic resonance brain images of 349 MCI subjects (164 MCI-C and 185 MCI-NC) from ADNI database, we demonstrate the validity of the proposed method, which also outperforms the competing methods.
KW - MCI diagnosis
KW - longitudinal MR images
KW - multi-task sparse learning
KW - sparse representation classifier
UR - http://www.scopus.com/inward/record.url?scp=84886742982&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886742982&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-02267-3_31
DO - 10.1007/978-3-319-02267-3_31
M3 - Conference contribution
AN - SCOPUS:84886742982
SN - 9783319022666
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 243
EP - 250
BT - Machine Learning in Medical Imaging - 4th International Workshop, MLMI 2013, Held in Conjunction with MICCAI 2013, Proceedings
PB - Springer Verlag
T2 - 4th International Workshop on Machine Learning in Medical Imaging, MLMI 2013, Held in Conjunction with 16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013
Y2 - 22 September 2013 through 22 September 2013
ER -