Multicatalytic colloids with highly scalable, adjustable, and stable functionalities in organic and aqueous media

Donghee Kim, Sanghyuk Cheong, Yun Gyong Ahn, Sook Won Ryu, Jai Kyeong Kim, Jinhan Cho

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Despite a large number of developments of noble metal (or metal oxide) NP-based catalysts, it has been a great challenge to prepare high-performance recyclable catalysts with integrated functionalities that can be used in various solvent media. Here, we report on layer-by-layer (LbL) assembled multicatalysts with high catalytic performance, showing high dispersion and recycling stability in organic and aqueous media. The remarkable advantages of our approach are as follows. (i) Various metal or metal oxide NPs with desired catalytic performance can be easily incorporated into multilayered shells, forming densely packed arrays that allow one colloid to be used as a multicatalyst with highly integrated and controllable catalytic properties. (ii) Additionally, the dispersion stability of catalytic colloids in a desired solvent can be determined by the type of ultrathin outermost layer coating each colloid. (iii) Lastly, the covalent bonding between inorganic NPs and dendrimers within multilayer shells enhances the recycling stability of multicatalytic colloids. The resulting core-shell colloids including OA-Fe3O4 NPs, TOABr-Pd NPs, and OA-TiO2 NPs exhibited excellent performance in the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) and photocatalysis in aqueous media and in the Sonogashira coupling reaction (99% yield) in organic media. Given that the catalytic properties of recyclable colloids reported to date have entirely depended on the functionality of a single catalytic NP layer deposited onto colloids in selective solvent media, our approach provides a basis for the design and exploitation of high-performance recyclable colloids with integrated multicatalytic properties and high dispersion stability in a variety of solvents.

Original languageEnglish
Pages (from-to)7000-7016
Number of pages17
JournalNanoscale
Volume8
Issue number13
DOIs
Publication statusPublished - 2016 Apr 7

Fingerprint

Colloids
Metals
Oxides
Recycling
Dendrimers
Catalysts
Photocatalysis
Precious metals
Multilayers
Coatings
Oxidation

ASJC Scopus subject areas

  • Materials Science(all)

Cite this

Multicatalytic colloids with highly scalable, adjustable, and stable functionalities in organic and aqueous media. / Kim, Donghee; Cheong, Sanghyuk; Ahn, Yun Gyong; Ryu, Sook Won; Kim, Jai Kyeong; Cho, Jinhan.

In: Nanoscale, Vol. 8, No. 13, 07.04.2016, p. 7000-7016.

Research output: Contribution to journalArticle

Kim, Donghee ; Cheong, Sanghyuk ; Ahn, Yun Gyong ; Ryu, Sook Won ; Kim, Jai Kyeong ; Cho, Jinhan. / Multicatalytic colloids with highly scalable, adjustable, and stable functionalities in organic and aqueous media. In: Nanoscale. 2016 ; Vol. 8, No. 13. pp. 7000-7016.
@article{e37618260d804a95883ea1a4bd1cf136,
title = "Multicatalytic colloids with highly scalable, adjustable, and stable functionalities in organic and aqueous media",
abstract = "Despite a large number of developments of noble metal (or metal oxide) NP-based catalysts, it has been a great challenge to prepare high-performance recyclable catalysts with integrated functionalities that can be used in various solvent media. Here, we report on layer-by-layer (LbL) assembled multicatalysts with high catalytic performance, showing high dispersion and recycling stability in organic and aqueous media. The remarkable advantages of our approach are as follows. (i) Various metal or metal oxide NPs with desired catalytic performance can be easily incorporated into multilayered shells, forming densely packed arrays that allow one colloid to be used as a multicatalyst with highly integrated and controllable catalytic properties. (ii) Additionally, the dispersion stability of catalytic colloids in a desired solvent can be determined by the type of ultrathin outermost layer coating each colloid. (iii) Lastly, the covalent bonding between inorganic NPs and dendrimers within multilayer shells enhances the recycling stability of multicatalytic colloids. The resulting core-shell colloids including OA-Fe3O4 NPs, TOABr-Pd NPs, and OA-TiO2 NPs exhibited excellent performance in the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) and photocatalysis in aqueous media and in the Sonogashira coupling reaction (99{\%} yield) in organic media. Given that the catalytic properties of recyclable colloids reported to date have entirely depended on the functionality of a single catalytic NP layer deposited onto colloids in selective solvent media, our approach provides a basis for the design and exploitation of high-performance recyclable colloids with integrated multicatalytic properties and high dispersion stability in a variety of solvents.",
author = "Donghee Kim and Sanghyuk Cheong and Ahn, {Yun Gyong} and Ryu, {Sook Won} and Kim, {Jai Kyeong} and Jinhan Cho",
year = "2016",
month = "4",
day = "7",
doi = "10.1039/c5nr06390f",
language = "English",
volume = "8",
pages = "7000--7016",
journal = "Nanoscale",
issn = "2040-3364",
publisher = "Royal Society of Chemistry",
number = "13",

}

TY - JOUR

T1 - Multicatalytic colloids with highly scalable, adjustable, and stable functionalities in organic and aqueous media

AU - Kim, Donghee

AU - Cheong, Sanghyuk

AU - Ahn, Yun Gyong

AU - Ryu, Sook Won

AU - Kim, Jai Kyeong

AU - Cho, Jinhan

PY - 2016/4/7

Y1 - 2016/4/7

N2 - Despite a large number of developments of noble metal (or metal oxide) NP-based catalysts, it has been a great challenge to prepare high-performance recyclable catalysts with integrated functionalities that can be used in various solvent media. Here, we report on layer-by-layer (LbL) assembled multicatalysts with high catalytic performance, showing high dispersion and recycling stability in organic and aqueous media. The remarkable advantages of our approach are as follows. (i) Various metal or metal oxide NPs with desired catalytic performance can be easily incorporated into multilayered shells, forming densely packed arrays that allow one colloid to be used as a multicatalyst with highly integrated and controllable catalytic properties. (ii) Additionally, the dispersion stability of catalytic colloids in a desired solvent can be determined by the type of ultrathin outermost layer coating each colloid. (iii) Lastly, the covalent bonding between inorganic NPs and dendrimers within multilayer shells enhances the recycling stability of multicatalytic colloids. The resulting core-shell colloids including OA-Fe3O4 NPs, TOABr-Pd NPs, and OA-TiO2 NPs exhibited excellent performance in the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) and photocatalysis in aqueous media and in the Sonogashira coupling reaction (99% yield) in organic media. Given that the catalytic properties of recyclable colloids reported to date have entirely depended on the functionality of a single catalytic NP layer deposited onto colloids in selective solvent media, our approach provides a basis for the design and exploitation of high-performance recyclable colloids with integrated multicatalytic properties and high dispersion stability in a variety of solvents.

AB - Despite a large number of developments of noble metal (or metal oxide) NP-based catalysts, it has been a great challenge to prepare high-performance recyclable catalysts with integrated functionalities that can be used in various solvent media. Here, we report on layer-by-layer (LbL) assembled multicatalysts with high catalytic performance, showing high dispersion and recycling stability in organic and aqueous media. The remarkable advantages of our approach are as follows. (i) Various metal or metal oxide NPs with desired catalytic performance can be easily incorporated into multilayered shells, forming densely packed arrays that allow one colloid to be used as a multicatalyst with highly integrated and controllable catalytic properties. (ii) Additionally, the dispersion stability of catalytic colloids in a desired solvent can be determined by the type of ultrathin outermost layer coating each colloid. (iii) Lastly, the covalent bonding between inorganic NPs and dendrimers within multilayer shells enhances the recycling stability of multicatalytic colloids. The resulting core-shell colloids including OA-Fe3O4 NPs, TOABr-Pd NPs, and OA-TiO2 NPs exhibited excellent performance in the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) and photocatalysis in aqueous media and in the Sonogashira coupling reaction (99% yield) in organic media. Given that the catalytic properties of recyclable colloids reported to date have entirely depended on the functionality of a single catalytic NP layer deposited onto colloids in selective solvent media, our approach provides a basis for the design and exploitation of high-performance recyclable colloids with integrated multicatalytic properties and high dispersion stability in a variety of solvents.

UR - http://www.scopus.com/inward/record.url?scp=84962019527&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84962019527&partnerID=8YFLogxK

U2 - 10.1039/c5nr06390f

DO - 10.1039/c5nr06390f

M3 - Article

AN - SCOPUS:84962019527

VL - 8

SP - 7000

EP - 7016

JO - Nanoscale

JF - Nanoscale

SN - 2040-3364

IS - 13

ER -