Multilayer actuator composed of PZN-PZT and PZN-PZT/Ag fabricated by Co-extrusion process

Chang Bun Yoon, Young Hag Koh, Gun Tae Park, Hyoun Ee Kim

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


A multilayer ceramic actuator composed of piezoelectrically active Pb(Zn1/3Nb2/3)0.2-Pb(Zr0.5Ti 0.5)O0.8 (PZN-PZT) layers and electrically conducting PZN-PZT/Ag layers was fabricated by the co-extrusion process. For the piezoelectric layers, PZN-PZT, which is sinterable at a low temperature (900°C), was used. For the conducting layers, a PZN-PZT/Ag composite, made by mixing silver particles with the PZN-PZT matrix, was employed. For the co-extrusion process, piezoelectric and conducting feedrods were made by mixing the PZN-PZT and PZN-PZT/Ag, respectively, with a thermoplastic polymer. The initial feedrods, which were composed of five 3 mm-thick PZN-PZT layers, two 1.5 mm-thick PZN-PZT layers, and six 1 mm-thick PZN-PZT/Ag layers, were co-extruded through a 24 mm × 2 mm reduction die at 105°C to produce continuous multilayered green sheets. The sheets were stacked, warm pressed, and sintered at 900°C for 4 h after binder burnout. The sintered multilayer actuator showed distinct layers without any reaction products or cracks at the interface. The thicknesses of the piezoelectric and conducting layers were about 200 and 70 μm, respectively. The displacement of the multilayer actuator, composed of 40 piezoelectric layers (with a total height of 10.8 mm), was about 10 μm at an applied voltage of 500 V.

Original languageEnglish
Pages (from-to)1625-1627
Number of pages3
JournalJournal of the American Ceramic Society
Issue number6
Publication statusPublished - 2005 Jun
Externally publishedYes

ASJC Scopus subject areas

  • Ceramics and Composites
  • Materials Chemistry


Dive into the research topics of 'Multilayer actuator composed of PZN-PZT and PZN-PZT/Ag fabricated by Co-extrusion process'. Together they form a unique fingerprint.

Cite this