Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion

Gi Dae Park, Jung Sang Cho, Yun Chan Kang

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Multicomponent metal oxide hollow-nanosphere decorated reduced graphene oxide (rGO) composite powders are prepared by spray pyrolysis with nanoscale Kirkendall diffusion. The double-layer NiFe2O4@NiO-hollow-nanosphere decorated rGO composite powders are prepared using the first target material. The NiFe-alloy-nanopowder decorated rGO powders are prepared as an intermediate product by post-treatment under the reducing atmosphere of the NiFe2O4/NiO-decorated rGO composite powders obtained by spray pyrolysis. The different diffusion rates of Ni (83 pm for Ni2+) and Fe (76 pm for Fe2+, 65 pm for Fe3+) cations with different radii during nanoscale Kirkendall diffusion result in multiphase and double-layer NiFe2O4@NiO hollow nanospheres. The mean size of the hollow NiFe2O4@NiO nanospheres decorated uniformly within crumpled rGO is 14 nm. The first discharge capacities of the nanosphere-decorated rGO composite powders with filled NiFe2O4/NiO and hollow NiFe2O4@NiO at a current density of 1 A g-1 are 1168 and 1319 mA h g-1, respectively. Their discharge capacities for the 100th cycle are 597 and 951 mA h g-1, respectively. The discharge capacity of the NiFe2O4@NiO-hollow-nanosphere-decorated rGO composite powders at the high current density of 4 A g-1 for the 400th cycle is 789 mA h g-1.

Original languageEnglish
Pages (from-to)16842-16849
Number of pages8
JournalACS Applied Materials and Interfaces
Volume7
Issue number30
DOIs
Publication statusPublished - 2015 Aug 5

Fingerprint

Spray pyrolysis
Graphite
Nanospheres
Powders
Oxides
Graphene
Composite materials
Current density
nickel ferrite
Cations
Positive ions
Metals

Keywords

  • Kirkendall effect
  • lithium ion batteries
  • nanostructure
  • reduced graphene oxide
  • spray pyrolysis

ASJC Scopus subject areas

  • Materials Science(all)

Cite this

@article{f4d8ae149611427fbb5d5ebd83dae58b,
title = "Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion",
abstract = "Multicomponent metal oxide hollow-nanosphere decorated reduced graphene oxide (rGO) composite powders are prepared by spray pyrolysis with nanoscale Kirkendall diffusion. The double-layer NiFe2O4@NiO-hollow-nanosphere decorated rGO composite powders are prepared using the first target material. The NiFe-alloy-nanopowder decorated rGO powders are prepared as an intermediate product by post-treatment under the reducing atmosphere of the NiFe2O4/NiO-decorated rGO composite powders obtained by spray pyrolysis. The different diffusion rates of Ni (83 pm for Ni2+) and Fe (76 pm for Fe2+, 65 pm for Fe3+) cations with different radii during nanoscale Kirkendall diffusion result in multiphase and double-layer NiFe2O4@NiO hollow nanospheres. The mean size of the hollow NiFe2O4@NiO nanospheres decorated uniformly within crumpled rGO is 14 nm. The first discharge capacities of the nanosphere-decorated rGO composite powders with filled NiFe2O4/NiO and hollow NiFe2O4@NiO at a current density of 1 A g-1 are 1168 and 1319 mA h g-1, respectively. Their discharge capacities for the 100th cycle are 597 and 951 mA h g-1, respectively. The discharge capacity of the NiFe2O4@NiO-hollow-nanosphere-decorated rGO composite powders at the high current density of 4 A g-1 for the 400th cycle is 789 mA h g-1.",
keywords = "Kirkendall effect, lithium ion batteries, nanostructure, reduced graphene oxide, spray pyrolysis",
author = "Park, {Gi Dae} and Cho, {Jung Sang} and Kang, {Yun Chan}",
year = "2015",
month = "8",
day = "5",
doi = "10.1021/acsami.5b04891",
language = "English",
volume = "7",
pages = "16842--16849",
journal = "ACS applied materials & interfaces",
issn = "1944-8244",
publisher = "American Chemical Society",
number = "30",

}

TY - JOUR

T1 - Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion

AU - Park, Gi Dae

AU - Cho, Jung Sang

AU - Kang, Yun Chan

PY - 2015/8/5

Y1 - 2015/8/5

N2 - Multicomponent metal oxide hollow-nanosphere decorated reduced graphene oxide (rGO) composite powders are prepared by spray pyrolysis with nanoscale Kirkendall diffusion. The double-layer NiFe2O4@NiO-hollow-nanosphere decorated rGO composite powders are prepared using the first target material. The NiFe-alloy-nanopowder decorated rGO powders are prepared as an intermediate product by post-treatment under the reducing atmosphere of the NiFe2O4/NiO-decorated rGO composite powders obtained by spray pyrolysis. The different diffusion rates of Ni (83 pm for Ni2+) and Fe (76 pm for Fe2+, 65 pm for Fe3+) cations with different radii during nanoscale Kirkendall diffusion result in multiphase and double-layer NiFe2O4@NiO hollow nanospheres. The mean size of the hollow NiFe2O4@NiO nanospheres decorated uniformly within crumpled rGO is 14 nm. The first discharge capacities of the nanosphere-decorated rGO composite powders with filled NiFe2O4/NiO and hollow NiFe2O4@NiO at a current density of 1 A g-1 are 1168 and 1319 mA h g-1, respectively. Their discharge capacities for the 100th cycle are 597 and 951 mA h g-1, respectively. The discharge capacity of the NiFe2O4@NiO-hollow-nanosphere-decorated rGO composite powders at the high current density of 4 A g-1 for the 400th cycle is 789 mA h g-1.

AB - Multicomponent metal oxide hollow-nanosphere decorated reduced graphene oxide (rGO) composite powders are prepared by spray pyrolysis with nanoscale Kirkendall diffusion. The double-layer NiFe2O4@NiO-hollow-nanosphere decorated rGO composite powders are prepared using the first target material. The NiFe-alloy-nanopowder decorated rGO powders are prepared as an intermediate product by post-treatment under the reducing atmosphere of the NiFe2O4/NiO-decorated rGO composite powders obtained by spray pyrolysis. The different diffusion rates of Ni (83 pm for Ni2+) and Fe (76 pm for Fe2+, 65 pm for Fe3+) cations with different radii during nanoscale Kirkendall diffusion result in multiphase and double-layer NiFe2O4@NiO hollow nanospheres. The mean size of the hollow NiFe2O4@NiO nanospheres decorated uniformly within crumpled rGO is 14 nm. The first discharge capacities of the nanosphere-decorated rGO composite powders with filled NiFe2O4/NiO and hollow NiFe2O4@NiO at a current density of 1 A g-1 are 1168 and 1319 mA h g-1, respectively. Their discharge capacities for the 100th cycle are 597 and 951 mA h g-1, respectively. The discharge capacity of the NiFe2O4@NiO-hollow-nanosphere-decorated rGO composite powders at the high current density of 4 A g-1 for the 400th cycle is 789 mA h g-1.

KW - Kirkendall effect

KW - lithium ion batteries

KW - nanostructure

KW - reduced graphene oxide

KW - spray pyrolysis

UR - http://www.scopus.com/inward/record.url?scp=84938633598&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938633598&partnerID=8YFLogxK

U2 - 10.1021/acsami.5b04891

DO - 10.1021/acsami.5b04891

M3 - Article

VL - 7

SP - 16842

EP - 16849

JO - ACS applied materials & interfaces

JF - ACS applied materials & interfaces

SN - 1944-8244

IS - 30

ER -