Multiple effects of Mg1–xNixO coating on P2-type Na0.67Ni0.33Mn0.67O2 to generate highly stable cathodes for sodium-ion batteries

Hyeongwoo Kim, Jae Ho Park, Sung Chul Kim, Dongjin Byun, Kyung Yoon Chung, Hyung Seok Kim, Wonchang Choi

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) is a state-of-the-art, high-energy and high-voltage cathode material in sodium-ion batteries. However, surface degradation effects, such as P2–O2 phase transformation, ordering of Na+/vacancy, electrolyte decomposition, and HF attack, limit its electrochemical stability. To counter these effects, we applied Mg1–xNixO (MgNiO) as a coating formed via wet-chemical coating to suppress unfavorable side reactions; surface doping of Mg2+ also occurs post-calcination, which is expected to reduce P2–O2 transition near the surface structure. MgNiO-NNMO exhibited outstanding cycling stability (70.08 mAh g−1 over 200 cycles) and rate capability (39.41 mAh g−1 at 5C over 800 cycles). The influence of Mg2+ doping was studied comprehensively through in situ and ex situ X-ray diffraction analysis. Furthermore, to characterize the protective role of the MgNiO coating in harsh conditions, we operated NNMO as Na half cells at a high temperature of 60 °C and high voltage of 4.5 V (vs. Na+/Na) for the first time; under these conditions, MgNiO-NNMO exhibited remarkable cycling stability (52.68 mAh g−1 over 100 cycles) as compared to pristine NNMO (7.213 mAh g−1 over 100 cycles). Surface analysis via X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy were also conducted to investigate the impact of electrolyte decomposition and HF attack.

Original languageEnglish
Article number157294
JournalJournal of Alloys and Compounds
Publication statusPublished - 2021 Mar 5


  • Cathode materials
  • MgNiO
  • NaNiMnO
  • Sodium-ion batteries
  • Surface modification

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry


Dive into the research topics of 'Multiple effects of Mg<sub>1–x</sub>Ni<sub>x</sub>O coating on P2-type Na<sub>0.67</sub>Ni<sub>0.33</sub>Mn<sub>0.67</sub>O<sub>2</sub> to generate highly stable cathodes for sodium-ion batteries'. Together they form a unique fingerprint.

Cite this