Multiple modality γ-ray imager using LaCl3(Ce) scintillators with active collimation method

Wonho Lee, Ajin Jo, Changyeon Yoon

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Multiple modality γ-ray imaging using mechanical and electronic collimation with different detection methods was proposed and tested by simulation. Although conventional mechanical collimators, which are made from high atomic number and density materials, passively filter the incident radiation, the mechanical collimator reported in this study consisted of LaCl3(Ce) scintillators, which actively collimate the radiation and are used as the 1st detector of an electronic collimator to reconstruct a Compton image. A detector box made from six planar LaCl3(Ce) scintillators was positioned behind the active collimator. The LaCl 3(Ce) scintillator arrays used as the active collimator and box detector consisted of voxels, each 2 mm × 2 mm × 5 mm3 in size. A combination of active collimators and box detectors can produce multiple modalities for both mechanical and electronic collimation. The information from each modality was combined effectively using the maximum likelihood expectation maximization (MLEM) method. Therefore, a reconstructed image from multiple modalities has inherently higher efficiency than each conventional modality. The reconstructed images were evaluated using the resolution-variance curve as a quantitative method. Although mechanical collimation is effective at low γ-ray energy and electronic collimation shows high performance at high γ-ray energy, multiple modalities are superior to the conventional single modalities for intermediate γ-ray energies (364 keV). The angular resolution and absolute efficiency were calculated for each modality and source energy.

Original languageEnglish
Article number5485082
Pages (from-to)1396-1403
Number of pages8
JournalIEEE Transactions on Nuclear Science
Volume57
Issue number3 PART 2
DOIs
Publication statusPublished - 2010 Jun

Keywords

  • Compton camera
  • Gamma camera
  • Multiple modality

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Multiple modality γ-ray imager using LaCl<sub>3</sub>(Ce) scintillators with active collimation method'. Together they form a unique fingerprint.

  • Cite this