Multiple scattering imager for photon therapy

Taewoong Lee, Changyeon Yoon, Won Ho Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

During radiation therapy, it is necessary to monitor the irradiated position and energy deposited in the patient. In general, calculations before photon exposure or 2D measurement of transmitted photons have been widely used for dose estimation. In this research, we propose real-time 3D dose measurement using Compton imaging technology. On the basis of the Monte-Carlo method, we designed a multiple scattering Compton camera system (MSCC) with semiconductor and scintillation detectors. The MSCC was constructed with two semiconductor detectors as scatter detectors and a CWO scintillator detector as an absorber detector. The two planar semiconductor arrays consisted of 40 × 40 pixels, each with a size of 1 × 1× thickness mm3, and the other CWO array consisted of 40 × 40 pixels, each with a size of 1 × 1 × thickness mm3. The design parameters such as the types of semiconductors, detector thicknesses and distances between detectors were optimized on the basis of the detection efficiency and angular resolution of reconstructed images for a point source. Under the optimized conditions, uncertainty factors in geometry and energy were estimated for various the inter-detector distances. We used a source corresponding to photons scattered from a water phantom exposed to the 6-MeV peak X-ray. According to our simulation results, the figure of merit (FOM) reached its maximum value when the inter-detector distance is 3 cm. In order to achieve a high FOM, we chose 1 cm as the optimum thickness for scattering detectors. The position uncertainty caused by the pixelization effect was the major factor to degrade the angular resolution of the reconstructed images and the degradation caused by energy broadening was less than expected. The angular uncertainties caused by Doppler broadening and incorrect sequencing were minimal compared with that of pixelization. Our simulation showed the feasibility of using the semiconductor based Compton camera to monitor the exposed dose in 3D radiation therapy.

Original languageEnglish
Title of host publicationIEEE Nuclear Science Symposium Conference Record
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781479905348
DOIs
Publication statusPublished - 2013 Jan 1
Event2013 60th IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2013 - Seoul, Korea, Republic of
Duration: 2013 Oct 272013 Nov 2

Other

Other2013 60th IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2013
CountryKorea, Republic of
CitySeoul
Period13/10/2713/11/2

Fingerprint

Semiconductors
Photons
therapy
detectors
Uncertainty
photons
scattering
Radiotherapy
Therapeutics
Monte Carlo Method
cameras
angular resolution
figure of merit
dosage
radiation therapy
pixels
X-Rays
Technology
sequencing
Water

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging
  • Radiation

Cite this

Lee, T., Yoon, C., & Lee, W. H. (2013). Multiple scattering imager for photon therapy. In IEEE Nuclear Science Symposium Conference Record [6829836] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/NSSMIC.2013.6829836

Multiple scattering imager for photon therapy. / Lee, Taewoong; Yoon, Changyeon; Lee, Won Ho.

IEEE Nuclear Science Symposium Conference Record. Institute of Electrical and Electronics Engineers Inc., 2013. 6829836.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Lee, T, Yoon, C & Lee, WH 2013, Multiple scattering imager for photon therapy. in IEEE Nuclear Science Symposium Conference Record., 6829836, Institute of Electrical and Electronics Engineers Inc., 2013 60th IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2013, Seoul, Korea, Republic of, 13/10/27. https://doi.org/10.1109/NSSMIC.2013.6829836
Lee T, Yoon C, Lee WH. Multiple scattering imager for photon therapy. In IEEE Nuclear Science Symposium Conference Record. Institute of Electrical and Electronics Engineers Inc. 2013. 6829836 https://doi.org/10.1109/NSSMIC.2013.6829836
Lee, Taewoong ; Yoon, Changyeon ; Lee, Won Ho. / Multiple scattering imager for photon therapy. IEEE Nuclear Science Symposium Conference Record. Institute of Electrical and Electronics Engineers Inc., 2013.
@inproceedings{3632e1170d024892a60ab8d824cffc2e,
title = "Multiple scattering imager for photon therapy",
abstract = "During radiation therapy, it is necessary to monitor the irradiated position and energy deposited in the patient. In general, calculations before photon exposure or 2D measurement of transmitted photons have been widely used for dose estimation. In this research, we propose real-time 3D dose measurement using Compton imaging technology. On the basis of the Monte-Carlo method, we designed a multiple scattering Compton camera system (MSCC) with semiconductor and scintillation detectors. The MSCC was constructed with two semiconductor detectors as scatter detectors and a CWO scintillator detector as an absorber detector. The two planar semiconductor arrays consisted of 40 × 40 pixels, each with a size of 1 × 1× thickness mm3, and the other CWO array consisted of 40 × 40 pixels, each with a size of 1 × 1 × thickness mm3. The design parameters such as the types of semiconductors, detector thicknesses and distances between detectors were optimized on the basis of the detection efficiency and angular resolution of reconstructed images for a point source. Under the optimized conditions, uncertainty factors in geometry and energy were estimated for various the inter-detector distances. We used a source corresponding to photons scattered from a water phantom exposed to the 6-MeV peak X-ray. According to our simulation results, the figure of merit (FOM) reached its maximum value when the inter-detector distance is 3 cm. In order to achieve a high FOM, we chose 1 cm as the optimum thickness for scattering detectors. The position uncertainty caused by the pixelization effect was the major factor to degrade the angular resolution of the reconstructed images and the degradation caused by energy broadening was less than expected. The angular uncertainties caused by Doppler broadening and incorrect sequencing were minimal compared with that of pixelization. Our simulation showed the feasibility of using the semiconductor based Compton camera to monitor the exposed dose in 3D radiation therapy.",
author = "Taewoong Lee and Changyeon Yoon and Lee, {Won Ho}",
year = "2013",
month = "1",
day = "1",
doi = "10.1109/NSSMIC.2013.6829836",
language = "English",
isbn = "9781479905348",
booktitle = "IEEE Nuclear Science Symposium Conference Record",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - GEN

T1 - Multiple scattering imager for photon therapy

AU - Lee, Taewoong

AU - Yoon, Changyeon

AU - Lee, Won Ho

PY - 2013/1/1

Y1 - 2013/1/1

N2 - During radiation therapy, it is necessary to monitor the irradiated position and energy deposited in the patient. In general, calculations before photon exposure or 2D measurement of transmitted photons have been widely used for dose estimation. In this research, we propose real-time 3D dose measurement using Compton imaging technology. On the basis of the Monte-Carlo method, we designed a multiple scattering Compton camera system (MSCC) with semiconductor and scintillation detectors. The MSCC was constructed with two semiconductor detectors as scatter detectors and a CWO scintillator detector as an absorber detector. The two planar semiconductor arrays consisted of 40 × 40 pixels, each with a size of 1 × 1× thickness mm3, and the other CWO array consisted of 40 × 40 pixels, each with a size of 1 × 1 × thickness mm3. The design parameters such as the types of semiconductors, detector thicknesses and distances between detectors were optimized on the basis of the detection efficiency and angular resolution of reconstructed images for a point source. Under the optimized conditions, uncertainty factors in geometry and energy were estimated for various the inter-detector distances. We used a source corresponding to photons scattered from a water phantom exposed to the 6-MeV peak X-ray. According to our simulation results, the figure of merit (FOM) reached its maximum value when the inter-detector distance is 3 cm. In order to achieve a high FOM, we chose 1 cm as the optimum thickness for scattering detectors. The position uncertainty caused by the pixelization effect was the major factor to degrade the angular resolution of the reconstructed images and the degradation caused by energy broadening was less than expected. The angular uncertainties caused by Doppler broadening and incorrect sequencing were minimal compared with that of pixelization. Our simulation showed the feasibility of using the semiconductor based Compton camera to monitor the exposed dose in 3D radiation therapy.

AB - During radiation therapy, it is necessary to monitor the irradiated position and energy deposited in the patient. In general, calculations before photon exposure or 2D measurement of transmitted photons have been widely used for dose estimation. In this research, we propose real-time 3D dose measurement using Compton imaging technology. On the basis of the Monte-Carlo method, we designed a multiple scattering Compton camera system (MSCC) with semiconductor and scintillation detectors. The MSCC was constructed with two semiconductor detectors as scatter detectors and a CWO scintillator detector as an absorber detector. The two planar semiconductor arrays consisted of 40 × 40 pixels, each with a size of 1 × 1× thickness mm3, and the other CWO array consisted of 40 × 40 pixels, each with a size of 1 × 1 × thickness mm3. The design parameters such as the types of semiconductors, detector thicknesses and distances between detectors were optimized on the basis of the detection efficiency and angular resolution of reconstructed images for a point source. Under the optimized conditions, uncertainty factors in geometry and energy were estimated for various the inter-detector distances. We used a source corresponding to photons scattered from a water phantom exposed to the 6-MeV peak X-ray. According to our simulation results, the figure of merit (FOM) reached its maximum value when the inter-detector distance is 3 cm. In order to achieve a high FOM, we chose 1 cm as the optimum thickness for scattering detectors. The position uncertainty caused by the pixelization effect was the major factor to degrade the angular resolution of the reconstructed images and the degradation caused by energy broadening was less than expected. The angular uncertainties caused by Doppler broadening and incorrect sequencing were minimal compared with that of pixelization. Our simulation showed the feasibility of using the semiconductor based Compton camera to monitor the exposed dose in 3D radiation therapy.

UR - http://www.scopus.com/inward/record.url?scp=84904170061&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84904170061&partnerID=8YFLogxK

U2 - 10.1109/NSSMIC.2013.6829836

DO - 10.1109/NSSMIC.2013.6829836

M3 - Conference contribution

AN - SCOPUS:84904170061

SN - 9781479905348

BT - IEEE Nuclear Science Symposium Conference Record

PB - Institute of Electrical and Electronics Engineers Inc.

ER -