Nanopatterning biomolecules by block copolymer self-assembly

Kato L. Killops, Nalini Gupta, Michael D. Dimitriou, Nathaniel A. Lynd, Hyunjung Jung, Helen Tran, Joona Bang, Luis M. Campos

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

The fabrication of sub-100 nm features with bioactive molecules is a laborious and expensive process. To overcome these limitations, we present a modular strategy to create nanostructured substrates (ca. 25 nm features) using functional block copolymers (BCPs) based on poly(styrene-b-ethylene oxide) to controllably promote or inhibit cell adhesion. A single type of BCP was functionalized with a peptide, a perfluorinated moiety, and both compounds, to tune nanoscale phase separation and interactions with NIH3T3 fibroblast cells. The focal adhesion formation and morphology of the cells were observed to vary dramatically according to the functionality presented on the surface of the synthetic substrate. It is envisioned that these materials will be useful as substrates that mimic the extracellular matrix (ECM) given that the adhesion receptors of cells can recognize clustered motifs as small as 10 nm, and their spatial orientation can influence cellular responses. (Figure presented)

Original languageEnglish
Pages (from-to)758-763
Number of pages6
JournalACS Macro Letters
Volume1
Issue number6
DOIs
Publication statusPublished - 2012 Dec 1

    Fingerprint

ASJC Scopus subject areas

  • Organic Chemistry
  • Materials Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry

Cite this

Killops, K. L., Gupta, N., Dimitriou, M. D., Lynd, N. A., Jung, H., Tran, H., ... Campos, L. M. (2012). Nanopatterning biomolecules by block copolymer self-assembly. ACS Macro Letters, 1(6), 758-763. https://doi.org/10.1021/mz300153k