Nanowire-based three-dimensional transparent conducting oxide electrodes for extremely fast charge collection

Jun Hong Noh, Hyun Soo Han, Sangwook Lee, Jin Young Kim, Kug Sun Hong, Gil Sang Han, Hyunjung Shin, Hyun Suk Jung

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

A 3D transparent conducting oxide (3D-TCO) has been fabricated by growing Sn-doped indium oxide (ITO) nanowire arrays on glass substrates via a vapor transport method. The 3D TCO charge-collection properties have been compared to those of conventional two-dimensional TCO (2D-TCO) thin fi lms. For use as a photoelectrode in dye-sensitized solar cells, ITO-TiO 2 core-shell nanowire arrays were prepared by depositing a 45 nm-thick mesoporous TiO 2 shell layer consisting of ∼6 nm anatase nanoparticles using TiCl 4 treatments. Dye-sensitized solar cells fabricated using these ITO-TiO 2 core-shell nanowire arrays show extremely fast charge collection owing to the shorter electron paths across the 45 nm-thick TiO 2 shell compared to the 2D TCO. Interestingly, the charge-collection time does not increase with the overall electrode thickness, which is counterintuitive to conventional diffusion models. This result implies that, in principle, maximum light harvesting can be achieved without hindering the charge collection. The proposed new 3D TCO should also be attractive for other photovoltaic applications where the active layer thickness is limited by poor charge collection.

Original languageEnglish
Pages (from-to)829-835
Number of pages7
JournalAdvanced Energy Materials
Volume1
Issue number5
DOIs
Publication statusPublished - 2011 Oct 1

    Fingerprint

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Cite this