Abstract
In this study, we perform simulations to demonstrate neural oscillations in a single silicon nanowire neuron device comprising a gated p–n–p–n diode structure with no external bias lines. The neuron device emulates a biological neuron using interlinked positive and negative feedback loops, enabling neural oscillations with a high firing frequency of ~ 8 MHz and a low energy consumption of ~ 4.5 × 10−15 J. The neuron device provides a high integration density and low energy consumption for neuromorphic hardware. The periodic and aperiodic patterns of the neural oscillations depend on the amplitudes of the analog and digital input signals. Furthermore, the device characteristics, energy band diagram, and leaky integrate-and-fire operation of the neuron device are discussed.
Original language | English |
---|---|
Article number | 3516 |
Journal | Scientific reports |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 Dec |
ASJC Scopus subject areas
- General