Abstract
Solid-state NMR spectroscopy is a potentially powerful method for obtaining molecular level structural information crucial for understanding the specific relationship between calcite crystals and occluded organic molecules that are important in biomineralization and biomimetic materials. In this work, a method is developed based on cross-polarization/magic angle spinning (CP/MAS) NMR to measure the heteronuclear distances and obtain structural information for large intracrystalline citrate defects in a synthetic calcite/citrate composite. Using compounds with well-characterized crystal structures, Mg(II) citrate and Sr(II) citrate, a correlation is established between T15, the CP time, and M215, the van Vleck heteronuclear dipolar second moment, which contains distance and structural information. This correlation is supported by peak assignments obtained from calculations of the 13C chemical shifts for crystalline Mg(II) citrate. On the basis of T IS-1 versus M215 correlation, measurement of TI5 for carbonate ions associated with citrate defects in a cakite(13C-enriched)/citrate coprecipitate yields an estimate for the distance between citrate and the nearest carbonate carbon that indicates close spatial proximity and provides useful constraints for future computational study. The applicability of TIS versus M 215 correlations to other weakly coupled spin-1/2 systems is discussed in terms of the effects of 1H homonuclear dipolar coupling, using the CP kinetics of Zn(II) dihydroxybenzoate and kaolinite for comparison. The results suggest a limited range of correlation constants and indicate that quantitative information can be obtained from CP/MAS kinetics obtained under similar experimental conditions.
Original language | English |
---|---|
Pages (from-to) | 408-417 |
Number of pages | 10 |
Journal | Magnetic Resonance in Chemistry |
Volume | 46 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2008 May |
Keywords
- C
- Calcite
- Citrate
- Cross-polarization
- DFT
- H
- NMR
- Second moment
- Si
- T
ASJC Scopus subject areas
- Chemistry(all)
- Materials Science(all)