Abstract
We introduce the notion of globally updating evolution for a class of weighted networks, in which the weight of a link is characterized by the amount of data packet transport flowing through it. By noting that the packet transport over the network is determined nonlocally, this approach can explain the generic nonlinear scaling between the strength and the degree of a node. We demonstrate by a simple model that the strength-driven evolution scheme recently introduced can be generalized to a nonlinear preferential attachment rule, generating the power-law behaviors in degree and in strength simultaneously.
Original language | English |
---|---|
Article number | 017103 |
Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
Volume | 72 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2005 Jul |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics