Abstract
We describe a novel and versatile approach for preparing resistive switching memory devices based on transition metal oxides. A titania precursor and poly(allyamine hydrochloride) (PAH) layers were deposited alternately onto platinum (Pt)-coated silicon substrates using electrostatic interactions. The multilayers were then converted to TiO2 nanocomposite (TiO 2 NC) films after thermal annealing. A top electrode was coated on the TiO2 NC films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (approximately 0.4 VRESET and 1.3 VSET), which is comparable to that observed in conventional devices fabricated by sputtering or metal organic chemical vapor deposition processes. The reported approach offers new opportunities for preparing inorganic material-based resistive switching memory devices with tailored electronic properties, allowing facile solution processing.
Original language | English |
---|---|
Pages (from-to) | 11276-11281 |
Number of pages | 6 |
Journal | Langmuir |
Volume | 25 |
Issue number | 19 |
DOIs | |
Publication status | Published - 2009 Oct 6 |
Externally published | Yes |
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry