Novel effective connectivity network inference for MCI identification

Yang Li, Hao Yang, Ke Li, Pew Thian Yap, Minjeong Kim, Chong Yaw Wee, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Inferring effective brain connectivity network is a challenging task owing to perplexing noise effects, the curse of dimensionality, and inter-subject variability. However, most existing network inference methods are based on correlation analysis and consider the datum points individually, revealing limited information of the neuron interactions and ignoring the relations amongst the derivatives of the data. Hence, we proposed a novel ultra group-constrained sparse linear regression model for effective connectivity inference. This model utilizes not only the discrepancy between observed signals and the model prediction, but also the discrepancy between the associated weak derivatives of the observed and the model signals for a more accurate effective connectivity inference. What’s more, a group constraint is applied to minimize the inter-subject variability and the proposed modeling was validated on a mild cognitive impairment dataset with superior results achieved.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Proceedings
EditorsYinghuan Shi, Heung-Il Suk, Kenji Suzuki, Qian Wang
PublisherSpringer Verlag
Pages316-324
Number of pages9
ISBN (Print)9783319673882
DOIs
Publication statusPublished - 2017
Externally publishedYes
Event8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 2017 Sept 102017 Sept 10

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10541 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period17/9/1017/9/10

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Novel effective connectivity network inference for MCI identification'. Together they form a unique fingerprint.

Cite this