TY - JOUR
T1 - Numerical simulation of the three-dimensional Rayleigh-Taylor instability
AU - Lee, Hyun Geun
AU - Kim, Junseok
N1 - Funding Information:
The first author (Hyun Geun Lee) was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education ( 2009-0093827 , 2012R1A6A3A01019827 ). The corresponding author (J.S. Kim) thanks the reviewers for their constructive comments and suggestions.
PY - 2013/11
Y1 - 2013/11
N2 - The Rayleigh-Taylor instability is a fundamental instability of an interface between two fluids of different densities, which occurs when the light fluid is pushing the heavy fluid. During the nonlinear stages, the growth of the Rayleigh-Taylor instability is greatly affected by three-dimensional effects. To investigate three-dimensional effects on the Rayleigh-Taylor instability, we introduce a new method of computation of the flow of two incompressible and immiscible fluids and implement a time-dependent pressure boundary condition that relates to a time-dependent density field at the domain boundary. Through numerical examples, we observe the two-layer roll-up phenomenon of the heavy fluid, which does not occur in the two-dimensional case. And by studying the positions of the bubble front, spike tip, and saddle point, we show that the three-dimensional Rayleigh-Taylor instability exhibits a stronger dependence on the density ratio than on the Reynolds number. Finally, we perform a long time three-dimensional simulation resulting in an equilibrium state.
AB - The Rayleigh-Taylor instability is a fundamental instability of an interface between two fluids of different densities, which occurs when the light fluid is pushing the heavy fluid. During the nonlinear stages, the growth of the Rayleigh-Taylor instability is greatly affected by three-dimensional effects. To investigate three-dimensional effects on the Rayleigh-Taylor instability, we introduce a new method of computation of the flow of two incompressible and immiscible fluids and implement a time-dependent pressure boundary condition that relates to a time-dependent density field at the domain boundary. Through numerical examples, we observe the two-layer roll-up phenomenon of the heavy fluid, which does not occur in the two-dimensional case. And by studying the positions of the bubble front, spike tip, and saddle point, we show that the three-dimensional Rayleigh-Taylor instability exhibits a stronger dependence on the density ratio than on the Reynolds number. Finally, we perform a long time three-dimensional simulation resulting in an equilibrium state.
KW - Phase-field method
KW - Projection method
KW - Rayleigh-Taylor instability
KW - Time-dependent pressure boundary condition
UR - http://www.scopus.com/inward/record.url?scp=84884591033&partnerID=8YFLogxK
U2 - 10.1016/j.camwa.2013.08.021
DO - 10.1016/j.camwa.2013.08.021
M3 - Article
AN - SCOPUS:84884591033
SN - 0898-1221
VL - 66
SP - 1466
EP - 1474
JO - Computers and Mathematics with Applications
JF - Computers and Mathematics with Applications
IS - 8
ER -