"On the fly" continuous generation of alginate fibers using a microfluidic device

Su Jung Shin, Ji Young Park, Jin Young Lee, Ho Park, Yong Doo Park, Kyu Back Lee, Chang Mo Whang, Sang Hoon Lee

Research output: Contribution to journalArticlepeer-review

191 Citations (Scopus)


In this paper, we introduce a new continuous production technique of calcium alginate fibers with a microfluidic platform similar to a spider in nature. We have used a poly(dimethylsiloxane) (PDMS) microfluidic device embedded capillary glass pipet as the apparatus for fiber generation. As a sample flow, we introduced a sodium alginate solution, and, as a sheath flow, a CaCl2 solution was introduced. The coaxial flows were generated at the intersection of both flows, and the sodium alginate was solidified to calcium alginate by diffusion of the Ca2+ ions during traveling through the outlet pipet. The diameter changes in the sample and sheath flow variations were examined, and the size of alginate fibers was well regulated by changing both flow rates. In addition, we have measured the elasticity of dried fibers. We evaluated the potential use of alginate fibers as a cell carrier by loading human fibroblasts during the "on the fly" fabrication process. From the LIVE/DEAD assay, cells survived well during the fiber fabrication process. In addition, we evaluate the capability of loading the therapeutic materials onto the alginate fibers by immobilized bovine serum albumin - fluorescein isothiocyanate in the fibers.

Original languageEnglish
Pages (from-to)9104-9108
Number of pages5
Issue number17
Publication statusPublished - 2007 Aug 14

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of '"On the fly" continuous generation of alginate fibers using a microfluidic device'. Together they form a unique fingerprint.

Cite this