Optimal norm estimate of operators related to the harmonic bergman projection on the ball

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

We first obtain an optimal norm estimate for one-parameter family of operators associated with the weighted harmonic Bergman projections on the ball. We then use this result and derive an optimal norm estimate for the weighted harmonic Bergman projections.

Original languageEnglish
Pages (from-to)357-374
Number of pages18
JournalTohoku Mathematical Journal
Volume62
Issue number3
DOIs
Publication statusPublished - 2010 Sep 1

Fingerprint

Bergman Projection
Ball
Harmonic
Norm
Operator
Estimate
Family

Keywords

  • Harmonic bergman projection
  • Weighted harmonic bergman kernel

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Optimal norm estimate of operators related to the harmonic bergman projection on the ball. / Choe, Boo Rim; Koo, Hyung Woon; Nam, Kyesook.

In: Tohoku Mathematical Journal, Vol. 62, No. 3, 01.09.2010, p. 357-374.

Research output: Contribution to journalArticle

@article{5269cd6209ac4d6e8ee3ada1aa51825a,
title = "Optimal norm estimate of operators related to the harmonic bergman projection on the ball",
abstract = "We first obtain an optimal norm estimate for one-parameter family of operators associated with the weighted harmonic Bergman projections on the ball. We then use this result and derive an optimal norm estimate for the weighted harmonic Bergman projections.",
keywords = "Harmonic bergman projection, Weighted harmonic bergman kernel",
author = "Choe, {Boo Rim} and Koo, {Hyung Woon} and Kyesook Nam",
year = "2010",
month = "9",
day = "1",
doi = "10.2748/tmj/1287148616",
language = "English",
volume = "62",
pages = "357--374",
journal = "Tohoku Mathematical Journal",
issn = "0040-8735",
publisher = "Tohoku University, Mathematical Institute",
number = "3",

}

TY - JOUR

T1 - Optimal norm estimate of operators related to the harmonic bergman projection on the ball

AU - Choe, Boo Rim

AU - Koo, Hyung Woon

AU - Nam, Kyesook

PY - 2010/9/1

Y1 - 2010/9/1

N2 - We first obtain an optimal norm estimate for one-parameter family of operators associated with the weighted harmonic Bergman projections on the ball. We then use this result and derive an optimal norm estimate for the weighted harmonic Bergman projections.

AB - We first obtain an optimal norm estimate for one-parameter family of operators associated with the weighted harmonic Bergman projections on the ball. We then use this result and derive an optimal norm estimate for the weighted harmonic Bergman projections.

KW - Harmonic bergman projection

KW - Weighted harmonic bergman kernel

UR - http://www.scopus.com/inward/record.url?scp=78049248542&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78049248542&partnerID=8YFLogxK

U2 - 10.2748/tmj/1287148616

DO - 10.2748/tmj/1287148616

M3 - Article

AN - SCOPUS:78049248542

VL - 62

SP - 357

EP - 374

JO - Tohoku Mathematical Journal

JF - Tohoku Mathematical Journal

SN - 0040-8735

IS - 3

ER -