Optimization and performance analysis of a multilayer structure for daytime radiative cooling

Mingeon Kim, Junyong Seo, Siwon Yoon, Heon Lee, Jungchul Lee, Bong Jae Lee

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Daytime radiative cooling has drawn much attention recently because a target surface can be passively maintained at sub-ambient temperature. In order to implement a daytime radiative cooling device (simply ‘radiative cooler’), strong thermal emission should be focused in the mid-infrared regime (8–13 µm), called ‘atmospheric transparent window’. At the same time, absorption of the solar irradiation should be minimized. In the present study, for optimal performance of daytime radiative cooling, a mixed-integer genetic algorithm was employed to achieve maximal infrared emission as well as minimal solar absorption. The combination of total number of layer, materials, and thickness of each layer in the multilayered radiative cooler were determined through optimization. The optimized multilayer structure exhibited the spectrally-averaged (in the 8–13 µm wavelength range) normal emissivity value of 0.96 and the solar-weighted absorptivity of 0.03. The corresponding net cooling power was found to be 101.0 W/m2, and a sub-ambient cooling temperature of 11.2C (i.e., below ambient temperature) was predicted in daytime at air-mas 1.5 condition. Besides, the mechanism of enhanced emission in the infrared region and suppressed absorption in the solar spectrum were thoroughly investigated. We also derived the expected performance of the optimized radiative cooler for various conditions of the environmental parameters, such as convection heat transfer coefficient, ambient temperature, and precipitable water level.

Original languageEnglish
Article number107475
JournalJournal of Quantitative Spectroscopy and Radiative Transfer
Volume260
DOIs
Publication statusPublished - 2021 Feb

Keywords

  • Daytime radiative cooling
  • Multilayer structure
  • Optimization
  • Precipitable water level

ASJC Scopus subject areas

  • Radiation
  • Atomic and Molecular Physics, and Optics
  • Spectroscopy

Fingerprint

Dive into the research topics of 'Optimization and performance analysis of a multilayer structure for daytime radiative cooling'. Together they form a unique fingerprint.

Cite this