Particle swarm optimization based load model parameter identification

Young Gon Kim, Hwachang Song, Hong Rae Kim, Byong Jun Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.

Original languageEnglish
Title of host publicationIEEE PES General Meeting, PES 2010
DOIs
Publication statusPublished - 2010 Dec 6
EventIEEE PES General Meeting, PES 2010 - Minneapolis, MN, United States
Duration: 2010 Jul 252010 Jul 29

Other

OtherIEEE PES General Meeting, PES 2010
CountryUnited States
CityMinneapolis, MN
Period10/7/2510/7/29

Fingerprint

Particle swarm optimization (PSO)
Identification (control systems)
Reactive power
Induction motors
Dynamic models
Sampling

Keywords

  • Dynamic load model
  • Parameter estimation
  • Particle swarm optimization
  • System identification

ASJC Scopus subject areas

  • Energy Engineering and Power Technology

Cite this

Kim, Y. G., Song, H., Kim, H. R., & Lee, B. J. (2010). Particle swarm optimization based load model parameter identification. In IEEE PES General Meeting, PES 2010 [5589394] https://doi.org/10.1109/PES.2010.5589394

Particle swarm optimization based load model parameter identification. / Kim, Young Gon; Song, Hwachang; Kim, Hong Rae; Lee, Byong Jun.

IEEE PES General Meeting, PES 2010. 2010. 5589394.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Kim, YG, Song, H, Kim, HR & Lee, BJ 2010, Particle swarm optimization based load model parameter identification. in IEEE PES General Meeting, PES 2010., 5589394, IEEE PES General Meeting, PES 2010, Minneapolis, MN, United States, 10/7/25. https://doi.org/10.1109/PES.2010.5589394
Kim YG, Song H, Kim HR, Lee BJ. Particle swarm optimization based load model parameter identification. In IEEE PES General Meeting, PES 2010. 2010. 5589394 https://doi.org/10.1109/PES.2010.5589394
Kim, Young Gon ; Song, Hwachang ; Kim, Hong Rae ; Lee, Byong Jun. / Particle swarm optimization based load model parameter identification. IEEE PES General Meeting, PES 2010. 2010.
@inproceedings{6971448912b141a68e4ca03c3139a839,
title = "Particle swarm optimization based load model parameter identification",
abstract = "This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.",
keywords = "Dynamic load model, Parameter estimation, Particle swarm optimization, System identification",
author = "Kim, {Young Gon} and Hwachang Song and Kim, {Hong Rae} and Lee, {Byong Jun}",
year = "2010",
month = "12",
day = "6",
doi = "10.1109/PES.2010.5589394",
language = "English",
isbn = "9781424483570",
booktitle = "IEEE PES General Meeting, PES 2010",

}

TY - GEN

T1 - Particle swarm optimization based load model parameter identification

AU - Kim, Young Gon

AU - Song, Hwachang

AU - Kim, Hong Rae

AU - Lee, Byong Jun

PY - 2010/12/6

Y1 - 2010/12/6

N2 - This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.

AB - This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.

KW - Dynamic load model

KW - Parameter estimation

KW - Particle swarm optimization

KW - System identification

UR - http://www.scopus.com/inward/record.url?scp=78649577961&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78649577961&partnerID=8YFLogxK

U2 - 10.1109/PES.2010.5589394

DO - 10.1109/PES.2010.5589394

M3 - Conference contribution

SN - 9781424483570

BT - IEEE PES General Meeting, PES 2010

ER -