Abstract
This study deals with diesel DeNOx catalysis by physically mixed Pd/TiO2/Al2O3 and water-gas-shift-reaction (WGSR) catalysts under CO-rich conditions at a CO/NOx ratio of 16. In the post-Euro IV era, many diesel engines are expected to produce CO-rich exhaust emissions due to the trend toward emission regulation and limitations in related technologies. Under these circumstances, the passive DeNOx strategy utilizing CO as a single reductant can be considered appropriate. The Pd/TiO2/Al2O3 catalyst is well known for its high DeNOx performance when CO and H2 are available as NOx reductants. However, when CO is used as a single reductant, the catalyst shows poor DeNOx activity, even if the CO concentration is exceptionally high (CO/NOx = 16). In this study, the DeNOx activity of Pd/TiO2/Al2O3 was noticeably improved by physically mixing it with a proper WGSR catalyst (Cu/ZnO/Al 2O3), which is capable of producing H2 and feeding it to Pd/TiO2/Al2O3 successfully even in the presence of O2. The NOx conversion exceeded 70% at 400-450 °C using a Pd/TiO2/Al2O3 + Cu/ZnO/Al2O3 catalyst mixture at a weight ratio of 33:67. The reaction gas consisted of 500 ppm NO, 8000 ppm CO, 8 vol.% O2, 5 vol.% CO2 and 10 vol.% H2O and w/f was 0.1 g s/cm 3.
Original language | English |
---|---|
Pages (from-to) | 106-115 |
Number of pages | 10 |
Journal | Catalysis Letters |
Volume | 136 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 2010 May |
Keywords
- Cu/ZnO/AlO
- DeNO
- Pd/TiO /AlO
- Post-Euro IV
- Selective catalytic reduction (SCR)
ASJC Scopus subject areas
- Catalysis
- Chemistry(all)