Pathway analysis of genome-wide association study for bone mineral density

Young Ho Lee, Sung Jae Choi, Jong Dae Ji, Gwan Gyu Song

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)

    Abstract

    The aim of this study was to identify the candidate causal single nucleotide polymorphisms (SNPs) and candidate causal mechanisms that contribute to bone mineral density (BMD) and to generate a SNP to gene to pathway hypothesis using an analytical pathway-based approach. We used hip BMD GWAS data of the genotypes of 301,019 SNPs in 5,715 Europeans. ICSNPathway (identify candidate causal SNPs and pathways) analysis was applied to the BMD GWAS dataset. The first stage involved the pre-selection of candidate causal SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate causal SNPs using improved-gene set enrichment analysis. ICSNPathway analysis identified seven candidate SNPs, eight candidate pathways, and seven hypothetical biological mechanisms. Eight pathways are as follows; gamma-hexachlorocyclohexane degradation (nominal p-value < 0.001, false discovery rate (FDR) <0.001), regulation of the smoothened signaling pathway (nominal p-value < 0.001, FDR = 0.016), TACI and BCMA stimulation of B cell immune response (nominal p-value < 0.001, FDR = 0.021), endonuclease activity (nominal p-value = 0.001, FDR = 0,026), regulation of defense response to virus (nominal p-value = 0.001, FDR = 0.028), serine-type-endopeptidase-inhibitor-activity (nominal p-value = 0.001, FDR = 0.044), endoribonuclease activity (nominal p-value = 0.002, FDR = 0.045), and myeloid leukocyte differentiation (nominal p-value = 0.001, FDR = 0.050). The most significant causal pathway was gamma-hexachlorocyclohexane degradation. CYP3A5, PON2, PON3, CMBL, PON1, ALPL, CYP3A43, CYP3A7, ACP6, ACPP, and ALPI (p < 0.05) are involved in the pathway of gamma-hexachlorocyclohexane degradation. Further examination of the gene contents revealed that DBR1, DICER1, EXO1, FEN1, POP1, POP4, RPP30, and RPP38 were involved in 2 of the 8 pathways (p < 0.05). By applying ICSNPathway analysis to BMD GWAS data, we identified seven candidate SNPs and eight pathways involving gamma-hexachlorocyclohexane degradation, which may contribute to low BMD.

    Original languageEnglish
    Pages (from-to)8099-8106
    Number of pages8
    JournalMolecular biology reports
    Volume39
    Issue number8
    DOIs
    Publication statusPublished - 2012 Aug

    Keywords

    • Bone mineral density
    • Genome-wide association study
    • Pathway-based analysis

    ASJC Scopus subject areas

    • Molecular Biology
    • Genetics

    Fingerprint

    Dive into the research topics of 'Pathway analysis of genome-wide association study for bone mineral density'. Together they form a unique fingerprint.

    Cite this