Performance data of CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives

Muhammad Jahandar, Nasir Khan, Muhammad Jahankhan, Chang Eun Song, Hang Ken Lee, Sang Kyu Lee, Won Suk Shin, Jong Cheol Lee, Sang Hyuk Im, Sang Jin Moon

Research output: Contribution to journalArticle

Abstract

The data provided in this data set is the study of organic-inorganic hybrid perovskite solar cells fabricated through incorporating the small amounts of ammonium halide NH4X (X = F, Cl, Br, I) additives into a CH3NH3PbI3 (MAPbI3) perovskite solution and is published as “High-Performance CH3NH3PbI3 Inverted Planar Perovskite Solar Cells via Ammonium Halide Additives”, available in Journal of Industrial and Engineering Chemistry [1]. A compact and uniform perovskite absorber layer with large perovskite crystalline grains, is realized by simply incorporating small amounts of additives into precursor solutions, and utilizing the anti-solvent engineering technique to control the nucleation and growth of perovskite crystal, turning out the enhanced device efficiency (NH4F: 14.88 ± 0.33%, NH4Cl: 16.63 ± 0.21%, NH4Br: 16.64 ± 0.35%, and NH4I: 17.28 ± 0.15%) compared to that of a reference MAPbI3 device (Ref.: 12.95 ± 0.48%). In addition, this simple technique of ammonium halide addition to precursor solutions increase the device reproducibility as well as long term stability.

Original languageEnglish
Article number104817
JournalData in Brief
Volume27
DOIs
Publication statusPublished - 2019 Dec

Keywords

  • Ammonium halide additives
  • CHNHPbI perovskite
  • Inverted planar structure
  • Perovskite grain size
  • anti-solvent engineering

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Performance data of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> inverted planar perovskite solar cells via ammonium halide additives'. Together they form a unique fingerprint.

Cite this