Period-2 spiral waves supported by nonmonotonic wave dispersion

Okyu Kwon, Tae Yun Kim, Kyoung J. Lee

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Rotating spiral waves appear ubiquitously in a wide range of nonlinear systems, and they play important roles in many biological phenomena. Recently, unusual spiral waves, which support period-2 dynamics, have been found in several different systems including cardiac tissues as well as nonlinear chemical reaction-diffusion systems. They are potentially significant as an intermediate dynamic state linking regularly rotating period-1 spiral waves to complex dynamic states such as cardiac fibrillations; for example, it is intrinsic of period-2 spiral waves to have "line defects" and their instability can lead to a spatiotemporal chaos. Previous mathematical models regarding period-2 spiral waves are mostly based on a coupled system of period-2 oscillators, but these are inappropriate for the description of a large class of systems that are composed of (nonoscillatory) excitable elements-a good example being the heart. In this paper we hypothesize that excitable media, which support a nonmonotonic conduction velocity dispersion relation, can sustain period-2 oscillatory spiral waves. We explicitly demonstrate that the new mechanism can create period-2 spirals by computer simulations on a simple mathematical model describing spiral wave front dynamics.

Original languageEnglish
Article number046213
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume82
Issue number4
DOIs
Publication statusPublished - 2010 Oct 19

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Period-2 spiral waves supported by nonmonotonic wave dispersion'. Together they form a unique fingerprint.

  • Cite this