TY - JOUR
T1 - Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines
AU - Moon, Hyun Seuk
AU - Dincer, Fadime
AU - Mantzoros, Christos S.
N1 - Funding Information:
The Mantzoros Laboratory was supported by the National Institute of Diabetes and Digestive and Kidney Diseases grants 58785 , 79929 and 81913 , and by Award Number 1I01CX000422-01A1 from the Clinical Science Research and Development Service of the VA Office of Research and Development .
PY - 2013/8
Y1 - 2013/8
N2 - Aims/Hypothesis Irisin is a novel, myocyte secreted, hormone that has been proposed to mediate the beneficial effects of exercise on metabolism. Irisin is expressed, at lower levels, in human brains and knock-down of the precursor of irisin, FNDC5, decreases neural differentiation of mouse embryonic stem cells. No previous studies have evaluated whether irisin may directly regulate hippocampal neurogenesis in mouse hippocampal neuronal (HN) cells. Methods Hippocampal neurogenesis and irisin signaling were studied in vitro using mouse H19-7 HN cell lines. Results We observed that cell proliferation is regulated by irisin in a dose-dependent manner in mouse H19-7 HN cells. Specifically, physiological concentrations of irisin, 5 to 10 nmol/L, had no effect on cell proliferation when compared to control. By contrast, pharmacological concentrations of irisin, 50 to 100 nmol/L, increased cell proliferation when compared to control. Similar to these results regarding irisin's effects on cell proliferation, we also observed that only pharmacological concentrations of irisin increased STAT3, but not AMPK and/or ERK, activation. Finally, we observed that irisin did not activate either microtubule-associated protein 2, a specific neurite outgrowth marker, or Synapsin, a specific synaptogenesis marker in mouse H19-7 HN cells. Conclusions/Interpretations Our data suggest that irisin, in pharmacological concentrations, increases cell proliferation in mouse H19-7 HN cells via STAT3, but not AMPK and/or ERK, signaling pathways. By contrast, neither physiological nor pharmacological concentrations of irisin alter markers of hippocampal neurogenesis in mouse H19-7 HN cell lines.
AB - Aims/Hypothesis Irisin is a novel, myocyte secreted, hormone that has been proposed to mediate the beneficial effects of exercise on metabolism. Irisin is expressed, at lower levels, in human brains and knock-down of the precursor of irisin, FNDC5, decreases neural differentiation of mouse embryonic stem cells. No previous studies have evaluated whether irisin may directly regulate hippocampal neurogenesis in mouse hippocampal neuronal (HN) cells. Methods Hippocampal neurogenesis and irisin signaling were studied in vitro using mouse H19-7 HN cell lines. Results We observed that cell proliferation is regulated by irisin in a dose-dependent manner in mouse H19-7 HN cells. Specifically, physiological concentrations of irisin, 5 to 10 nmol/L, had no effect on cell proliferation when compared to control. By contrast, pharmacological concentrations of irisin, 50 to 100 nmol/L, increased cell proliferation when compared to control. Similar to these results regarding irisin's effects on cell proliferation, we also observed that only pharmacological concentrations of irisin increased STAT3, but not AMPK and/or ERK, activation. Finally, we observed that irisin did not activate either microtubule-associated protein 2, a specific neurite outgrowth marker, or Synapsin, a specific synaptogenesis marker in mouse H19-7 HN cells. Conclusions/Interpretations Our data suggest that irisin, in pharmacological concentrations, increases cell proliferation in mouse H19-7 HN cells via STAT3, but not AMPK and/or ERK, signaling pathways. By contrast, neither physiological nor pharmacological concentrations of irisin alter markers of hippocampal neurogenesis in mouse H19-7 HN cell lines.
KW - Hippocampal neurogenesis
KW - Irisin
KW - Signaling
UR - http://www.scopus.com/inward/record.url?scp=84880571772&partnerID=8YFLogxK
U2 - 10.1016/j.metabol.2013.04.007
DO - 10.1016/j.metabol.2013.04.007
M3 - Article
C2 - 23664146
AN - SCOPUS:84880571772
SN - 0026-0495
VL - 62
SP - 1131
EP - 1136
JO - Metabolism: Clinical and Experimental
JF - Metabolism: Clinical and Experimental
IS - 8
ER -