Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell

N. Nambi Krishnan, Sangrae Lee, Ravindra V. Ghorpade, Anastasiia Konovalova, Jong Hyun Jang, Hyoung Juhn Kim, Jonghee Han, Dirk Henkensmeier, Haksoo Han

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)


Crosslinked metal oxide containing nanocomposite membranes, in which the filler also acts as crosslinker, were prepared by blending polybenzimidazole (PBI-OO) and phenylsulfonated TiO2 particles (s-TiO2). Thermal curing changes the ionically crosslinked system into a covalently crosslinked system. The synthesized s-TiO2 nanoparticles were analyzed by thermal gravimetric analysis and scanning electron microscopy. The covalently crosslinked nanocomposite membranes (c-sTiO2-PBI-OO) were doped with phosphoric acid (PA) for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The membrane properties, such as PA uptake, dimensional change, gel content, proton conductivity, mechanical property, and single cell performance were evaluated and compared with the properties of acid-doped c-PBI-OO. PA doped 6-c-sTiO2-PBI-OO (6 wt% sTiO2) showed the highest uptake of 392 wt%, and a proton conductivity at 160 °C of 98 mS cm−1. In the fuel cell, a peak power density of 356 mW cm−2 was obtained, which is 76% higher than that of a c-PBI-OO based system (202 mW cm−2). To evaluate the stability of the membrane performance over time, the best performing membrane was tested for over 700 h.

Original languageEnglish
Pages (from-to)11-20
Number of pages10
JournalJournal of Membrane Science
Publication statusPublished - 2018 Aug 15


  • Nanocomposite membrane
  • PBI-OO
  • Sulfophenylated TiO
  • Thermal crosslinking

ASJC Scopus subject areas

  • Biochemistry
  • Materials Science(all)
  • Physical and Theoretical Chemistry
  • Filtration and Separation


Dive into the research topics of 'Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO<sub>2</sub> as both filler and crosslinker, and their use in the HT-PEM fuel cell'. Together they form a unique fingerprint.

Cite this