Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: Implications for cartilage tissue engineering

Sung Eun Kim, Jae Hyung Park, Yong Woo Cho, Hesson Chung, Seo Young Jeong, Eunhee Bae Lee, Ick Chan Kwon

Research output: Contribution to journalArticle

252 Citations (Scopus)

Abstract

Damaged articular cartilage, caused by traumatic injury or degenerative diseases, has a limited regenerative capacity and frequently leads to the onset of osteoarthritis. As a promising strategy for the successful regeneration of long-lasting hyaline cartilage, tissue engineering has received increasing recognition. In this study, we attempted to design a novel type of porous chitosan scaffold, containing transforming growth factor-β1 (TGF-β1), to enhance chondrogenesis. First, to achieve a sustained release of TGF-β1, chitosan microspheres loaded with TGF-β1 (MS-TGFs) were prepared by the emulsion method, in the presence of tripolyphosphate; with an identical manner, microspheres loaded with BSA, a model protein, were also prepared. Both microspheres containing TGF-β1and BSA had spherical shapes with a size ranging from 0.2 to 1.5 μm. From the release experiments, it was found that both proteins were slowly released from the microspheres over 5 days in a PBS solution (pH 7.4), in which the release rate of TGF-β1 was much lower than that of BSA. Second, MS-TGFs were seeded onto the porous chitosan scaffold, prepared by the freeze-drying method, to observe the effect on the proliferation and differentiation of chondrocytes. It was obviously demonstrated from in vitro tests that, compared to the scaffold without MS-TGF, the scaffold containing MS-TGF significantly augments the cell proliferation and production of extracellular matrix, indicating the role of TGF-β1 released from the microspheres. These results suggest that the chitosan scaffold containing MS-TGF possesses a promising potential as an implant to treat cartilage defects.

Original languageEnglish
Pages (from-to)365-374
Number of pages10
JournalJournal of Controlled Release
Volume91
Issue number3
DOIs
Publication statusPublished - 2003 Sep 4

Keywords

  • Articular cartilage
  • Chitosan
  • Chondrocyte
  • Microsphere
  • Sustained release
  • Transforming growth factor β1

ASJC Scopus subject areas

  • Pharmaceutical Science

Fingerprint Dive into the research topics of 'Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: Implications for cartilage tissue engineering'. Together they form a unique fingerprint.

Cite this