Pose Correction for Highly Accurate Visual Localization in Large-scale Indoor Spaces

Janghun Hyeon, Joohyung Kim, Nakju Doh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Indoor visual localization is significant for various applications such as autonomous robots, augmented reality, and mixed reality. Recent advances in visual localization have demonstrated their feasibility in large-scale indoor spaces through coarse-to-fine methods that typically employ three steps: image retrieval, pose estimation, and pose selection. However, further research is needed to improve the accuracy of large-scale indoor visual localization. We demonstrate that the limitations in the previous methods can be attributed to the sparsity of image positions in the database, which causes view-differences between a query and a retrieved image from the database. In this paper, to address this problem, we propose a novel module, named pose correction, that enables re-estimation of the pose with local feature matching in a similar view by reorganizing the local features. This module enhances the accuracy of the initially estimated pose and assigns more reliable ranks. Furthermore, the proposed method achieves a new state-of-the-art performance with an accuracy of more than 90 % within 1.0 m in the challenging indoor benchmark dataset InLoc for the first time.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages15954-15963
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 2021 Oct 112021 Oct 17

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period21/10/1121/10/17

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Pose Correction for Highly Accurate Visual Localization in Large-scale Indoor Spaces'. Together they form a unique fingerprint.

Cite this