TY - JOUR
T1 - Precipitation-based microscale enzyme reactors coupled with porous and adhesive elastomer for effective bacterial decontamination and membrane antifouling on-demand
AU - Yoon, Young Chul
AU - Kim, Han Sol
AU - Yoon, Seji
AU - Yeon, Kyung Min
AU - Kim, Jungbae
N1 - Funding Information:
This work was supported by the National Research Foundation of Korea ( NRF ) grant funded by the Korea government ( MSIT ) (No. NRF- 2020R1A2C3009649 ).
Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/9
Y1 - 2022/9
N2 - Bacterial contamination of water environments can cause various troubles in various areas. As one of potential solutions, we develop enzyme-immobilized elastomer, and demonstrate the uses of enzyme reactions on-demand for effective microbial decontamination and antifouling. Asymmetrically-structured elastomer is prepared by combining two polydimethylsiloxane (PDMS) layers with different degrees of crosslinking: highly-crosslinked and lightly-crosslinked PDMS layers. At the surface of highly-crosslinked PDMS layer, porous structure with average diameter of 842 nm is formed by dissolving pre-packed and entrapped latex beads. Lightly-crosslinked PDMS on the other side, due to its adhesive nature, enables iterative attachments on various materials under either dry or wet condition. Glucose oxidase (GOx) is immobilized by using the pores at the surface of highly-crosslinked PDMS matrix via a ship-in-a-bottle protocol of precipitation-based microscale enzyme reactor (p-MER), which consists of GOx adsorption, precipitation and chemical crosslinking (EAPC). As a result, crosslinked enzyme aggregates (CLEAs) of GOx not only are well entrapped within many pores of highly-crosslinked PDMS layer (ship-in-bottle) but also cover the external surface of matrix, both of which are well connected together. Highly-interconnected network of CLEAs themselves effectively prevents enzyme leaching, which shows the 25% residual activity of GOx under shaking at 200 rpm for 156 days after 48% initial drop of loosely-bound p-MER after 4 days. In presence of glucose, the underwater attachment of biocatalytic elastomer demonstrates the generation of hydrogen peroxide via p-MER-catalyzed glucose oxidation, exhibiting effective biocidal activities against both gram-positive S. aureus and gram-negative E. coli. Adhesion-induced GOx-catalyzed reaction also alleviates the biofouling of membrane, suggesting its extendibility to various engineering systems being suffered by biofouling. This study of biocatalytic elastomer has demonstrated its new opportunities for the facile and on-demand enzyme-catalyzed reactions in various environmental applications, such as bactericidal treatment, water treatment/purification, and pollutant degradation.
AB - Bacterial contamination of water environments can cause various troubles in various areas. As one of potential solutions, we develop enzyme-immobilized elastomer, and demonstrate the uses of enzyme reactions on-demand for effective microbial decontamination and antifouling. Asymmetrically-structured elastomer is prepared by combining two polydimethylsiloxane (PDMS) layers with different degrees of crosslinking: highly-crosslinked and lightly-crosslinked PDMS layers. At the surface of highly-crosslinked PDMS layer, porous structure with average diameter of 842 nm is formed by dissolving pre-packed and entrapped latex beads. Lightly-crosslinked PDMS on the other side, due to its adhesive nature, enables iterative attachments on various materials under either dry or wet condition. Glucose oxidase (GOx) is immobilized by using the pores at the surface of highly-crosslinked PDMS matrix via a ship-in-a-bottle protocol of precipitation-based microscale enzyme reactor (p-MER), which consists of GOx adsorption, precipitation and chemical crosslinking (EAPC). As a result, crosslinked enzyme aggregates (CLEAs) of GOx not only are well entrapped within many pores of highly-crosslinked PDMS layer (ship-in-bottle) but also cover the external surface of matrix, both of which are well connected together. Highly-interconnected network of CLEAs themselves effectively prevents enzyme leaching, which shows the 25% residual activity of GOx under shaking at 200 rpm for 156 days after 48% initial drop of loosely-bound p-MER after 4 days. In presence of glucose, the underwater attachment of biocatalytic elastomer demonstrates the generation of hydrogen peroxide via p-MER-catalyzed glucose oxidation, exhibiting effective biocidal activities against both gram-positive S. aureus and gram-negative E. coli. Adhesion-induced GOx-catalyzed reaction also alleviates the biofouling of membrane, suggesting its extendibility to various engineering systems being suffered by biofouling. This study of biocatalytic elastomer has demonstrated its new opportunities for the facile and on-demand enzyme-catalyzed reactions in various environmental applications, such as bactericidal treatment, water treatment/purification, and pollutant degradation.
KW - Bacterial decontamination
KW - Biocatalytic elastomer
KW - Glucose oxidase
KW - Membrane antifouling
KW - Polydimethylsiloxane
KW - Precipitation-based microscale enzyme reactor
UR - http://www.scopus.com/inward/record.url?scp=85129527455&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2022.113407
DO - 10.1016/j.envres.2022.113407
M3 - Article
C2 - 35523281
AN - SCOPUS:85129527455
SN - 0013-9351
VL - 212
JO - Environmental Research
JF - Environmental Research
M1 - 113407
ER -