TY - JOUR
T1 - Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane
AU - Soyka, Florian
AU - Robuffo Giordano, Paolo
AU - Beykirch, Karl
AU - Bülthoff, Heinrich H.
N1 - Funding Information:
Acknowledgments This research was supported by a stipend from the Max Planck Society and by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31–10008). The authors wish to thank Michael Kerger, Dr. Harald Teufel and Dr. Michael Barnett-Cowan for their intensive technical support and helpful discussions.
PY - 2011/3
Y1 - 2011/3
N2 - In previous research, direction detection thresholds have been measured and successfully modeled by exposing participants to sinusoidal acceleration profiles of different durations. In this paper, we present measurements that reveal differences in thresholds depending not only on the duration of the profile, but also on the actual time course of the acceleration. The measurements are further explained by a model based on a transfer function, which is able to predict direction detection thresholds for all types of acceleration profiles. In order to quantify a participant's ability to detect the direction of motion in the horizontal plane, a four-alternative forced-choice task was implemented. Three types of acceleration profiles (sinusoidal, trapezoidal and triangular) were tested for three different durations (1.5, 2.36 and 5.86 s). To the best of our knowledge, this is the first study which varies both quantities (profile and duration) in a systematic way within a single experiment. The lowest thresholds were found for trapezoidal profiles and the highest for triangular profiles. Simulations for frequencies lower than the ones actually measured predict a change from this behavior: Sinusoidal profiles are predicted to yield the highest thresholds at low frequencies. This qualitative prediction is only possible with a model that is able to predict thresholds for different types of acceleration profiles. Our modeling approach represents an important advancement, because it allows for a more general and accurate description of perceptual thresholds for simple and complex translational motions.
AB - In previous research, direction detection thresholds have been measured and successfully modeled by exposing participants to sinusoidal acceleration profiles of different durations. In this paper, we present measurements that reveal differences in thresholds depending not only on the duration of the profile, but also on the actual time course of the acceleration. The measurements are further explained by a model based on a transfer function, which is able to predict direction detection thresholds for all types of acceleration profiles. In order to quantify a participant's ability to detect the direction of motion in the horizontal plane, a four-alternative forced-choice task was implemented. Three types of acceleration profiles (sinusoidal, trapezoidal and triangular) were tested for three different durations (1.5, 2.36 and 5.86 s). To the best of our knowledge, this is the first study which varies both quantities (profile and duration) in a systematic way within a single experiment. The lowest thresholds were found for trapezoidal profiles and the highest for triangular profiles. Simulations for frequencies lower than the ones actually measured predict a change from this behavior: Sinusoidal profiles are predicted to yield the highest thresholds at low frequencies. This qualitative prediction is only possible with a model that is able to predict thresholds for different types of acceleration profiles. Our modeling approach represents an important advancement, because it allows for a more general and accurate description of perceptual thresholds for simple and complex translational motions.
KW - Model
KW - Otolith
KW - Psychophysics
KW - Self-Motion
KW - Threshold
KW - Transfer function
KW - Vestibular
UR - http://www.scopus.com/inward/record.url?scp=79952438576&partnerID=8YFLogxK
U2 - 10.1007/s00221-010-2523-9
DO - 10.1007/s00221-010-2523-9
M3 - Article
C2 - 21234751
AN - SCOPUS:79952438576
SN - 0014-4819
VL - 209
SP - 95
EP - 107
JO - Experimental Brain Research
JF - Experimental Brain Research
IS - 1
ER -