TY - GEN
T1 - Prediction of Memory Retrieval Performance Using Ear-EEG Signals
AU - Kalafatovich, Jenifer
AU - Lee, Minji
AU - Lee, Seong Whan
N1 - Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7
Y1 - 2020/7
N2 - Many studies have explored brain signals during the performance of a memory task to predict later remembered items. However, prediction methods are still poorly used in real life and are not practical due to the use of electroencephalography (EEG) recorded from the scalp. Ear-EEG has been recently used to measure brain signals due to its flexibility when applying it to real world environments. In this study, we attempt to predict whether a shown stimulus is going to be remembered or forgotten using ear-EEG and compared its performance with scalp-EEG. Our results showed that there was no significant difference between ear-EEG and scalp-EEG. In addition, the higher prediction accuracy was obtained using a convolutional neural network (pre-stimulus: 74.06%, on-going stimulus: 69.53%) and it was compared to other baseline methods. These results showed that it is possible to predict performance of a memory task using ear-EEG signals and it could be used for predicting memory retrieval in a practical brain-computer interface.
AB - Many studies have explored brain signals during the performance of a memory task to predict later remembered items. However, prediction methods are still poorly used in real life and are not practical due to the use of electroencephalography (EEG) recorded from the scalp. Ear-EEG has been recently used to measure brain signals due to its flexibility when applying it to real world environments. In this study, we attempt to predict whether a shown stimulus is going to be remembered or forgotten using ear-EEG and compared its performance with scalp-EEG. Our results showed that there was no significant difference between ear-EEG and scalp-EEG. In addition, the higher prediction accuracy was obtained using a convolutional neural network (pre-stimulus: 74.06%, on-going stimulus: 69.53%) and it was compared to other baseline methods. These results showed that it is possible to predict performance of a memory task using ear-EEG signals and it could be used for predicting memory retrieval in a practical brain-computer interface.
UR - http://www.scopus.com/inward/record.url?scp=85091031054&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091031054&partnerID=8YFLogxK
U2 - 10.1109/EMBC44109.2020.9175990
DO - 10.1109/EMBC44109.2020.9175990
M3 - Conference contribution
AN - SCOPUS:85091031054
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 3363
EP - 3366
BT - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Y2 - 20 July 2020 through 24 July 2020
ER -