Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: Effects of in situ adsorption, fungal elicitation and permeabilizatione

Sang Jun Sim, H. N. Chang, J. R. Liu, K. H. Jung

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

Various hairy root clones were derived by transforming two kinds of Catharanthus roseus plants (Catharanthus roseus cvs. Little Linda and Little Delicata) with Agrobacterium rhizogenes ATCC 15834. Hairy root growth and indole alkaloid production were then investigated to select a high-yielding hairy root clone. Among three Amberlite resins (XAD-2, XAD-4, and XAD-7), XAD-7 greatly enhanced the release of catharanthine and ajmalicine from hairy root cultures, with an increase in total production. To enhance alkaloid production and secretion, a permeabilizing agent (dimethyl sulfoxide) and a fungal elicitor to provide physical and biochemical stress, respectively, together with in situ adsorption. Dimethyl sulfoxide (0.5% v/v) treatment with in situ adsorption using XAD-7 was found appropriate for releasing indole alkaloids from hairy roots without affecting cell viability. In addition, fungal elicitation by Penicillium sp. enhanced both alkaloid production and secretion. By combining in situ adsorption sequentially with these techniques, the release ratio of catharanthine and ajmalicine was enhanced up to 20 and 70%, respectively, which was 3.4 and 2 times higher than that obtained with in situ adsorption by XAD-7 alone. Over a 27-d culture period, the total amounts of catharanthine and ajmalicine produced were 67 and 30.15 mg/l, respectively. These results indicated that in situ adsorption sequentially applied with permeabilization and fungal elicitation have a synergistic effect on the production and secretion of indole alkaloids.

Original languageEnglish
Pages (from-to)229-234
Number of pages6
JournalJournal of Fermentation and Bioengineering
Volume78
Issue number3
DOIs
Publication statusPublished - 1994 Oct 27

Fingerprint

Catharanthus
Indole Alkaloids
Alkaloids
Adsorption
Dimethyl sulfoxide
Dimethyl Sulfoxide
Clone Cells
Agrobacterium
Penicillium
Cell Survival
Resins
Cells
amberlite XAD 7
Growth
catharanthine
raubasine

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Cite this

@article{55b89f5aae5c4248830d9ec1f30d53da,
title = "Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: Effects of in situ adsorption, fungal elicitation and permeabilizatione",
abstract = "Various hairy root clones were derived by transforming two kinds of Catharanthus roseus plants (Catharanthus roseus cvs. Little Linda and Little Delicata) with Agrobacterium rhizogenes ATCC 15834. Hairy root growth and indole alkaloid production were then investigated to select a high-yielding hairy root clone. Among three Amberlite resins (XAD-2, XAD-4, and XAD-7), XAD-7 greatly enhanced the release of catharanthine and ajmalicine from hairy root cultures, with an increase in total production. To enhance alkaloid production and secretion, a permeabilizing agent (dimethyl sulfoxide) and a fungal elicitor to provide physical and biochemical stress, respectively, together with in situ adsorption. Dimethyl sulfoxide (0.5{\%} v/v) treatment with in situ adsorption using XAD-7 was found appropriate for releasing indole alkaloids from hairy roots without affecting cell viability. In addition, fungal elicitation by Penicillium sp. enhanced both alkaloid production and secretion. By combining in situ adsorption sequentially with these techniques, the release ratio of catharanthine and ajmalicine was enhanced up to 20 and 70{\%}, respectively, which was 3.4 and 2 times higher than that obtained with in situ adsorption by XAD-7 alone. Over a 27-d culture period, the total amounts of catharanthine and ajmalicine produced were 67 and 30.15 mg/l, respectively. These results indicated that in situ adsorption sequentially applied with permeabilization and fungal elicitation have a synergistic effect on the production and secretion of indole alkaloids.",
author = "Sim, {Sang Jun} and Chang, {H. N.} and Liu, {J. R.} and Jung, {K. H.}",
year = "1994",
month = "10",
day = "27",
doi = "10.1016/0922-338X(94)90295-X",
language = "English",
volume = "78",
pages = "229--234",
journal = "Journal of Bioscience and Bioengineering",
issn = "1389-1723",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus

T2 - Effects of in situ adsorption, fungal elicitation and permeabilizatione

AU - Sim, Sang Jun

AU - Chang, H. N.

AU - Liu, J. R.

AU - Jung, K. H.

PY - 1994/10/27

Y1 - 1994/10/27

N2 - Various hairy root clones were derived by transforming two kinds of Catharanthus roseus plants (Catharanthus roseus cvs. Little Linda and Little Delicata) with Agrobacterium rhizogenes ATCC 15834. Hairy root growth and indole alkaloid production were then investigated to select a high-yielding hairy root clone. Among three Amberlite resins (XAD-2, XAD-4, and XAD-7), XAD-7 greatly enhanced the release of catharanthine and ajmalicine from hairy root cultures, with an increase in total production. To enhance alkaloid production and secretion, a permeabilizing agent (dimethyl sulfoxide) and a fungal elicitor to provide physical and biochemical stress, respectively, together with in situ adsorption. Dimethyl sulfoxide (0.5% v/v) treatment with in situ adsorption using XAD-7 was found appropriate for releasing indole alkaloids from hairy roots without affecting cell viability. In addition, fungal elicitation by Penicillium sp. enhanced both alkaloid production and secretion. By combining in situ adsorption sequentially with these techniques, the release ratio of catharanthine and ajmalicine was enhanced up to 20 and 70%, respectively, which was 3.4 and 2 times higher than that obtained with in situ adsorption by XAD-7 alone. Over a 27-d culture period, the total amounts of catharanthine and ajmalicine produced were 67 and 30.15 mg/l, respectively. These results indicated that in situ adsorption sequentially applied with permeabilization and fungal elicitation have a synergistic effect on the production and secretion of indole alkaloids.

AB - Various hairy root clones were derived by transforming two kinds of Catharanthus roseus plants (Catharanthus roseus cvs. Little Linda and Little Delicata) with Agrobacterium rhizogenes ATCC 15834. Hairy root growth and indole alkaloid production were then investigated to select a high-yielding hairy root clone. Among three Amberlite resins (XAD-2, XAD-4, and XAD-7), XAD-7 greatly enhanced the release of catharanthine and ajmalicine from hairy root cultures, with an increase in total production. To enhance alkaloid production and secretion, a permeabilizing agent (dimethyl sulfoxide) and a fungal elicitor to provide physical and biochemical stress, respectively, together with in situ adsorption. Dimethyl sulfoxide (0.5% v/v) treatment with in situ adsorption using XAD-7 was found appropriate for releasing indole alkaloids from hairy roots without affecting cell viability. In addition, fungal elicitation by Penicillium sp. enhanced both alkaloid production and secretion. By combining in situ adsorption sequentially with these techniques, the release ratio of catharanthine and ajmalicine was enhanced up to 20 and 70%, respectively, which was 3.4 and 2 times higher than that obtained with in situ adsorption by XAD-7 alone. Over a 27-d culture period, the total amounts of catharanthine and ajmalicine produced were 67 and 30.15 mg/l, respectively. These results indicated that in situ adsorption sequentially applied with permeabilization and fungal elicitation have a synergistic effect on the production and secretion of indole alkaloids.

UR - http://www.scopus.com/inward/record.url?scp=0027984628&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027984628&partnerID=8YFLogxK

U2 - 10.1016/0922-338X(94)90295-X

DO - 10.1016/0922-338X(94)90295-X

M3 - Article

AN - SCOPUS:0027984628

VL - 78

SP - 229

EP - 234

JO - Journal of Bioscience and Bioengineering

JF - Journal of Bioscience and Bioengineering

SN - 1389-1723

IS - 3

ER -