Production of high-calorie synthetic natural gas using copper-impregnated iron catalysts

Yong Hee Lee, Dae Won Lee, Kwan Young Lee

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Fe-Cu catalysts were applied in the production of high-calorie synthetic natural gas (HC-SNG), wherein a proper level of C2–C4 hydrocarbon selectivity must be secured. The Fe-Cu catalysts were activated by reduction under diluted CO gas before the reaction, and their catalytically active Fe phases changed according to the reduction temperature: Fe3O4 formed when reduced at 300 °C, carbon-deficient FeCx at 400 °C and Fe3C at 500 °C. Iron carbide catalysts achieved stronger CO adsorption and higher BET surface area than Fe3O4 catalysts, which resulted in higher CO conversion. The carbon-deficient FeCx was metal-like in its electron structure due to the low number of bonded carbons, and it was attributed to the highest CO and H2 conversion of FC15-400R by providing H2 activation ability. The Cn (n ≥ 2) selectivity or carbon chain growth of the hydrocarbons increased as the carburization degree of the active Fe phase increased, which was associated with an increase in the CO chemisorption strength. The impregnated Cu exerted little influence on the product selectivity, but it promoted hydrogen adsorption, thereby improving the paraffin-to-olefin ratio of the produced hydrocarbons.

Original languageEnglish
Pages (from-to)190-198
Number of pages9
JournalJournal of Molecular Catalysis A: Chemical
Volume425
DOIs
Publication statusPublished - 2016 Dec 15

Keywords

  • Fe-Cu catalyst
  • Heating value
  • High-calorie synthetic natural gas

ASJC Scopus subject areas

  • Catalysis
  • Process Chemistry and Technology
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Production of high-calorie synthetic natural gas using copper-impregnated iron catalysts'. Together they form a unique fingerprint.

  • Cite this