Protection and immune modulation of activated human vaginal epithelial cells by Aurea helianthus extract

Yoonjin Park, Kyunghwa Lee, Chayul Lee, Ahran Song, Jinkwan Kim, Boyong Kim, Seung Gwan Lee

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Aurea helianthus extract is associated with various properties including anti-melanogenesis, anti-oxidation, tumorigenic suppression, and immunoregulation; however, the mechanism by which it executes the immunomodulation of human vaginal epithelial cells (HVECs) remains elusive. We established three immunological functions of the extract. First, it mediated tumorigenic suppression in HVECs. Expression of cytokeratin 8, cancer antigen-125, and vimentin was dramatically downregulated in HVECs exposed to the extract under oxidative and fungal stresses. Second, the extract activated dendritic cells and macrophages. On exposing progenitor dendritic cells to the extract, the number of CD304+ cells increased by 40%; further, under oxidative and fungal stresses, this number was approximately 1.8 and 1.3 times lower, respectively, compared to that in the stressed cells. In monocytic differentiation, the number of dendritic cells and macrophages increased 9 and 6 times, respectively, compared to that in the control. Additionally, the extract enhanced and recovered polarisation by approximately 1.5 and 2 times, respectively, than that under stressed conditions. Third, the phagocytic activity of macrophages, against HPV16, 18, and 33 peptides, was enhanced by 12–35 times compared with that under stressed conditions. Thus, A. helianthus extract is a strong stimulator of the immune system and tumorigenic suppression under stress conditions.

Original languageEnglish
Article number9227
JournalScientific reports
Volume10
Issue number1
DOIs
Publication statusPublished - 2020 Dec 1

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Protection and immune modulation of activated human vaginal epithelial cells by Aurea helianthus extract'. Together they form a unique fingerprint.

Cite this