Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals

Beate I. Escher, Christina E. Cowan-Ellsberry, Scott Dyer, Michelle R. Embry, Susan Erhardt, Marlies Halder, Jung-Hwan Kwon, Karla Johanning, Mattheus T T Oosterwijk, Sibylle Rutishauser, Helmut Segner, John Nichols

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K BSAw) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K S9w) and blood plasma (K bloodw). Measured K S9w and K bloodw values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K ow) as a surrogate for lipid partitioning and K BSAw to represent protein binding. For each compound, K bloodw was substantially greater than K S9w, primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V d) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f u) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.

Original languageEnglish
Pages (from-to)1134-1143
Number of pages10
JournalChemical Research in Toxicology
Volume24
Issue number7
DOIs
Publication statusPublished - 2011 Jul 18
Externally publishedYes

Fingerprint

Organic Chemicals
Bioaccumulation
Oncorhynchus mykiss
Protein Binding
Liver
Assays
Blood
Lipids
Degradation
Colloids
Proteins
Fishes
Fish
Methoxychlor
Chlorpyrifos
Octanols
Dialysis membranes
Quantitative Structure-Activity Relationship
Water
Microdialysis

ASJC Scopus subject areas

  • Toxicology

Cite this

Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals. / Escher, Beate I.; Cowan-Ellsberry, Christina E.; Dyer, Scott; Embry, Michelle R.; Erhardt, Susan; Halder, Marlies; Kwon, Jung-Hwan; Johanning, Karla; Oosterwijk, Mattheus T T; Rutishauser, Sibylle; Segner, Helmut; Nichols, John.

In: Chemical Research in Toxicology, Vol. 24, No. 7, 18.07.2011, p. 1134-1143.

Research output: Contribution to journalArticle

Escher, Beate I. ; Cowan-Ellsberry, Christina E. ; Dyer, Scott ; Embry, Michelle R. ; Erhardt, Susan ; Halder, Marlies ; Kwon, Jung-Hwan ; Johanning, Karla ; Oosterwijk, Mattheus T T ; Rutishauser, Sibylle ; Segner, Helmut ; Nichols, John. / Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals. In: Chemical Research in Toxicology. 2011 ; Vol. 24, No. 7. pp. 1134-1143.
@article{871ab04eb5d340f0a9eac8ab21328aa1,
title = "Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals",
abstract = "Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K BSAw) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K S9w) and blood plasma (K bloodw). Measured K S9w and K bloodw values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K ow) as a surrogate for lipid partitioning and K BSAw to represent protein binding. For each compound, K bloodw was substantially greater than K S9w, primarily because blood contains more lipid than liver S9 fractions (1.84{\%} of wet weight vs 0.051{\%}). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V d) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f u) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.",
author = "Escher, {Beate I.} and Cowan-Ellsberry, {Christina E.} and Scott Dyer and Embry, {Michelle R.} and Susan Erhardt and Marlies Halder and Jung-Hwan Kwon and Karla Johanning and Oosterwijk, {Mattheus T T} and Sibylle Rutishauser and Helmut Segner and John Nichols",
year = "2011",
month = "7",
day = "18",
doi = "10.1021/tx200114y",
language = "English",
volume = "24",
pages = "1134--1143",
journal = "Chemical Research in Toxicology",
issn = "0893-228X",
publisher = "American Chemical Society",
number = "7",

}

TY - JOUR

T1 - Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals

AU - Escher, Beate I.

AU - Cowan-Ellsberry, Christina E.

AU - Dyer, Scott

AU - Embry, Michelle R.

AU - Erhardt, Susan

AU - Halder, Marlies

AU - Kwon, Jung-Hwan

AU - Johanning, Karla

AU - Oosterwijk, Mattheus T T

AU - Rutishauser, Sibylle

AU - Segner, Helmut

AU - Nichols, John

PY - 2011/7/18

Y1 - 2011/7/18

N2 - Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K BSAw) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K S9w) and blood plasma (K bloodw). Measured K S9w and K bloodw values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K ow) as a surrogate for lipid partitioning and K BSAw to represent protein binding. For each compound, K bloodw was substantially greater than K S9w, primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V d) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f u) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.

AB - Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K BSAw) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K S9w) and blood plasma (K bloodw). Measured K S9w and K bloodw values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K ow) as a surrogate for lipid partitioning and K BSAw to represent protein binding. For each compound, K bloodw was substantially greater than K S9w, primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V d) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f u) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.

UR - http://www.scopus.com/inward/record.url?scp=79960496457&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79960496457&partnerID=8YFLogxK

U2 - 10.1021/tx200114y

DO - 10.1021/tx200114y

M3 - Article

C2 - 21604782

AN - SCOPUS:79960496457

VL - 24

SP - 1134

EP - 1143

JO - Chemical Research in Toxicology

JF - Chemical Research in Toxicology

SN - 0893-228X

IS - 7

ER -