TY - JOUR
T1 - Quadrupole contribution to the third-order optical activity spectroscopy
AU - Choi, Jun Ho
AU - Cho, Minhaeng
N1 - Funding Information:
This work was supported by the CRI Program ofKOSEF (Korea Science and Engineering Foundation, MOST).
PY - 2007
Y1 - 2007
N2 - Time-resolved nonlinear optical activity measurement spectroscopy can be a useful tool for studying biomolecular and chemical reaction dynamics of chiral molecules. Only recently, the two-dimensional (2D) circularly polarized photon echo (CP-PE) spectroscopy of polypeptides and a photosynthetic light-harvesting complex were discussed, where the beam configuration was specifically controlled in such a way to eliminate the quadrupole contribution to the CP-PE signal. In this paper, we generalize the CP-PE spectroscopy by including the transition quadrupole contributions from peptide amide I vibrational transition and chlorophyll electronic transition. By using a density functional theory calculation method, the corresponding amide I vibrational and chlorophyll Qy electronic transition quadrupole tensor elements are determined. Amplitude of nonlinear optical transition pathway involving a quadrupole transition is found to be comparable to those of magnetic dipole terms for two different cases considered, i.e., dipeptides and photosynthetic antenna complex. However, due to the rotational averaging factors, the overall quadrupole contribution is an order of magnitude smaller than the magnetic dipole contribution. This suggests that the conventional 2D photon echo method and experimental scheme can be directly used to measure the 2D CP-PE signal from proteins and molecular complexes and that the 2D CP-PE signal is mainly dictated by the magnetic dipole contribution.
AB - Time-resolved nonlinear optical activity measurement spectroscopy can be a useful tool for studying biomolecular and chemical reaction dynamics of chiral molecules. Only recently, the two-dimensional (2D) circularly polarized photon echo (CP-PE) spectroscopy of polypeptides and a photosynthetic light-harvesting complex were discussed, where the beam configuration was specifically controlled in such a way to eliminate the quadrupole contribution to the CP-PE signal. In this paper, we generalize the CP-PE spectroscopy by including the transition quadrupole contributions from peptide amide I vibrational transition and chlorophyll electronic transition. By using a density functional theory calculation method, the corresponding amide I vibrational and chlorophyll Qy electronic transition quadrupole tensor elements are determined. Amplitude of nonlinear optical transition pathway involving a quadrupole transition is found to be comparable to those of magnetic dipole terms for two different cases considered, i.e., dipeptides and photosynthetic antenna complex. However, due to the rotational averaging factors, the overall quadrupole contribution is an order of magnitude smaller than the magnetic dipole contribution. This suggests that the conventional 2D photon echo method and experimental scheme can be directly used to measure the 2D CP-PE signal from proteins and molecular complexes and that the 2D CP-PE signal is mainly dictated by the magnetic dipole contribution.
UR - http://www.scopus.com/inward/record.url?scp=34547205079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547205079&partnerID=8YFLogxK
U2 - 10.1063/1.2750342
DO - 10.1063/1.2750342
M3 - Article
C2 - 17640137
AN - SCOPUS:34547205079
VL - 127
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
SN - 0021-9606
IS - 2
M1 - 024507
ER -