Quantification of Hypopigmentation Activity In Vitro

Yeon Ji Kim, Min Jung Kim, Dong Keon Kweon, Seung Taik Lim, Sung-Joon Lee

Research output: Contribution to journalArticle

Abstract

This study presents laboratory methods for the quantification of hypopigmentation activity in vitro. Melanin, the major pigment in melanocytes, is synthesized in response to multiple cellular and environmental factors. Melanin protects skin cells from ultraviolet damage, but also has biophysical and biochemical functions. Excessive production or accumulation of melanin in melanocytes can cause dermatological problems, such as freckles, dark spots, melasma, and moles. Therefore, the control of melanogenesis with hypopigmentation agents is important in individuals with clinical or cosmetic needs. Melanin is primarily synthesized in the melanosomes of melanocytes in a complex biochemical process called melanogenesis, which is influenced by extrinsic and intrinsic factors, such as hormones, inflammation, age, and ultraviolet light exposure. We describe three methods to determine the hypopigmentation activity of chemicals or natural substances in melanocytes: measurement of the 1) cellular tyrosinase activity and 2) melanin content, and 3) staining and quantifying cellular melanin with image analysis. In melanogenesis, tyrosinase catalyzes the rate-limiting step that converts L-tyrosine into 3,4-dihydroxyphenylalanine (L-DOPA) and then into dopaquinone. Therefore, the inhibition of tyrosinase is a primary hypopigmentation mechanism. In cultured melanocytes, tyrosinase activity can be quantified by adding L-DOPA as a substrate and measuring dopaquinone production by spectrophotometry. Melanogenesis can also be measured by quantifying the melanin content. The melanin-containing cellular fraction is extracted with NaOH and melanin is quantified spectrophotometrically. Finally, the melanin content can be quantified by image analysis following Fontana-Masson staining of melanin. Although the results of these in vitro assays may not always be reproduced in human skin, these methods are widely used in melanogenesis research, especially as the initial step to identify potential hypopigmentation activity. These methods can also be used to assess melanocyte activity, growth, and differentiation. Consistent results with the three different methods ensure the validity of the effects.

Original languageEnglish
JournalJournal of visualized experiments : JoVE
Issue number145
DOIs
Publication statusPublished - 2019 Mar 6

Fingerprint

Melanin
Hypopigmentation
Melanins
Melanocytes
Monophenol Monooxygenase
Melanosis
Dihydroxyphenylalanine
Image analysis
Tyrosine
Skin
In Vitro Techniques
Biochemical Phenomena
Staining and Labeling
Melanosomes
Intrinsic Factor
Cosmetics
Spectrophotometry
Hormones
Ultraviolet Rays
Pigments

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Cite this

Quantification of Hypopigmentation Activity In Vitro. / Kim, Yeon Ji; Kim, Min Jung; Kweon, Dong Keon; Lim, Seung Taik; Lee, Sung-Joon.

In: Journal of visualized experiments : JoVE, No. 145, 06.03.2019.

Research output: Contribution to journalArticle

@article{3ea6e6685dba4ef9a2c96a848b5c95eb,
title = "Quantification of Hypopigmentation Activity In Vitro",
abstract = "This study presents laboratory methods for the quantification of hypopigmentation activity in vitro. Melanin, the major pigment in melanocytes, is synthesized in response to multiple cellular and environmental factors. Melanin protects skin cells from ultraviolet damage, but also has biophysical and biochemical functions. Excessive production or accumulation of melanin in melanocytes can cause dermatological problems, such as freckles, dark spots, melasma, and moles. Therefore, the control of melanogenesis with hypopigmentation agents is important in individuals with clinical or cosmetic needs. Melanin is primarily synthesized in the melanosomes of melanocytes in a complex biochemical process called melanogenesis, which is influenced by extrinsic and intrinsic factors, such as hormones, inflammation, age, and ultraviolet light exposure. We describe three methods to determine the hypopigmentation activity of chemicals or natural substances in melanocytes: measurement of the 1) cellular tyrosinase activity and 2) melanin content, and 3) staining and quantifying cellular melanin with image analysis. In melanogenesis, tyrosinase catalyzes the rate-limiting step that converts L-tyrosine into 3,4-dihydroxyphenylalanine (L-DOPA) and then into dopaquinone. Therefore, the inhibition of tyrosinase is a primary hypopigmentation mechanism. In cultured melanocytes, tyrosinase activity can be quantified by adding L-DOPA as a substrate and measuring dopaquinone production by spectrophotometry. Melanogenesis can also be measured by quantifying the melanin content. The melanin-containing cellular fraction is extracted with NaOH and melanin is quantified spectrophotometrically. Finally, the melanin content can be quantified by image analysis following Fontana-Masson staining of melanin. Although the results of these in vitro assays may not always be reproduced in human skin, these methods are widely used in melanogenesis research, especially as the initial step to identify potential hypopigmentation activity. These methods can also be used to assess melanocyte activity, growth, and differentiation. Consistent results with the three different methods ensure the validity of the effects.",
author = "Kim, {Yeon Ji} and Kim, {Min Jung} and Kweon, {Dong Keon} and Lim, {Seung Taik} and Sung-Joon Lee",
year = "2019",
month = "3",
day = "6",
doi = "10.3791/58185",
language = "English",
journal = "Journal of Visualized Experiments",
issn = "1940-087X",
publisher = "MYJoVE Corporation",
number = "145",

}

TY - JOUR

T1 - Quantification of Hypopigmentation Activity In Vitro

AU - Kim, Yeon Ji

AU - Kim, Min Jung

AU - Kweon, Dong Keon

AU - Lim, Seung Taik

AU - Lee, Sung-Joon

PY - 2019/3/6

Y1 - 2019/3/6

N2 - This study presents laboratory methods for the quantification of hypopigmentation activity in vitro. Melanin, the major pigment in melanocytes, is synthesized in response to multiple cellular and environmental factors. Melanin protects skin cells from ultraviolet damage, but also has biophysical and biochemical functions. Excessive production or accumulation of melanin in melanocytes can cause dermatological problems, such as freckles, dark spots, melasma, and moles. Therefore, the control of melanogenesis with hypopigmentation agents is important in individuals with clinical or cosmetic needs. Melanin is primarily synthesized in the melanosomes of melanocytes in a complex biochemical process called melanogenesis, which is influenced by extrinsic and intrinsic factors, such as hormones, inflammation, age, and ultraviolet light exposure. We describe three methods to determine the hypopigmentation activity of chemicals or natural substances in melanocytes: measurement of the 1) cellular tyrosinase activity and 2) melanin content, and 3) staining and quantifying cellular melanin with image analysis. In melanogenesis, tyrosinase catalyzes the rate-limiting step that converts L-tyrosine into 3,4-dihydroxyphenylalanine (L-DOPA) and then into dopaquinone. Therefore, the inhibition of tyrosinase is a primary hypopigmentation mechanism. In cultured melanocytes, tyrosinase activity can be quantified by adding L-DOPA as a substrate and measuring dopaquinone production by spectrophotometry. Melanogenesis can also be measured by quantifying the melanin content. The melanin-containing cellular fraction is extracted with NaOH and melanin is quantified spectrophotometrically. Finally, the melanin content can be quantified by image analysis following Fontana-Masson staining of melanin. Although the results of these in vitro assays may not always be reproduced in human skin, these methods are widely used in melanogenesis research, especially as the initial step to identify potential hypopigmentation activity. These methods can also be used to assess melanocyte activity, growth, and differentiation. Consistent results with the three different methods ensure the validity of the effects.

AB - This study presents laboratory methods for the quantification of hypopigmentation activity in vitro. Melanin, the major pigment in melanocytes, is synthesized in response to multiple cellular and environmental factors. Melanin protects skin cells from ultraviolet damage, but also has biophysical and biochemical functions. Excessive production or accumulation of melanin in melanocytes can cause dermatological problems, such as freckles, dark spots, melasma, and moles. Therefore, the control of melanogenesis with hypopigmentation agents is important in individuals with clinical or cosmetic needs. Melanin is primarily synthesized in the melanosomes of melanocytes in a complex biochemical process called melanogenesis, which is influenced by extrinsic and intrinsic factors, such as hormones, inflammation, age, and ultraviolet light exposure. We describe three methods to determine the hypopigmentation activity of chemicals or natural substances in melanocytes: measurement of the 1) cellular tyrosinase activity and 2) melanin content, and 3) staining and quantifying cellular melanin with image analysis. In melanogenesis, tyrosinase catalyzes the rate-limiting step that converts L-tyrosine into 3,4-dihydroxyphenylalanine (L-DOPA) and then into dopaquinone. Therefore, the inhibition of tyrosinase is a primary hypopigmentation mechanism. In cultured melanocytes, tyrosinase activity can be quantified by adding L-DOPA as a substrate and measuring dopaquinone production by spectrophotometry. Melanogenesis can also be measured by quantifying the melanin content. The melanin-containing cellular fraction is extracted with NaOH and melanin is quantified spectrophotometrically. Finally, the melanin content can be quantified by image analysis following Fontana-Masson staining of melanin. Although the results of these in vitro assays may not always be reproduced in human skin, these methods are widely used in melanogenesis research, especially as the initial step to identify potential hypopigmentation activity. These methods can also be used to assess melanocyte activity, growth, and differentiation. Consistent results with the three different methods ensure the validity of the effects.

UR - http://www.scopus.com/inward/record.url?scp=85063712721&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063712721&partnerID=8YFLogxK

U2 - 10.3791/58185

DO - 10.3791/58185

M3 - Article

C2 - 30907884

AN - SCOPUS:85063712721

JO - Journal of Visualized Experiments

JF - Journal of Visualized Experiments

SN - 1940-087X

IS - 145

ER -