TY - JOUR
T1 - Random access transport capacity of multihop AF relaying
T2 - A throughput-reliability tradeoff
AU - Lee, Jaeyoung
AU - Kim, Sung Il
AU - Kim, Saejoon
AU - Heo, Jun
N1 - Funding Information:
This research was supported by “The Ministry of Knowledge Economy (MKE), Korea, under the Information Technology Research Center (ITRC) support program supervised by the NIPA” (NIPA-2012-H0301-12-3002). The work of S. Kim was supported by the Sogang University Research Grant of 2011.
PY - 2013
Y1 - 2013
N2 - To determine the capacity of distributed wireless networks (i.e., ad hoc networks), the random access transport capacity was proposed as the average maximum rate of successful end-to-end transmission in the distance. In this article, we consider the random access transport capacity for multihop relaying to find the end-to-end throughput of a wireless ad hoc network, where each node relays the signal using an amplify-and-forward (AF) strategy. In particular, we analyze the exact outage probability for multihop AF relaying in the presence of both co-channel interference and thermal noise, where interferers are spatially distributed following a Poisson distribution. In our numerical results, it is observed that the maximum random access transport capacity is achieved at a specific spatial density of transmitting nodes due to the throughput-reliability tradeoff as the number of transmitting nodes (=interferers) increases. We compute the optimal spatial density of transmitting nodes that maximize their random access transport capacity. As a result, we can obtain the actual random access transport capacity of multihop AF relaying and predict the maximum number of transmitting nodes per unit area to maximize their performance.
AB - To determine the capacity of distributed wireless networks (i.e., ad hoc networks), the random access transport capacity was proposed as the average maximum rate of successful end-to-end transmission in the distance. In this article, we consider the random access transport capacity for multihop relaying to find the end-to-end throughput of a wireless ad hoc network, where each node relays the signal using an amplify-and-forward (AF) strategy. In particular, we analyze the exact outage probability for multihop AF relaying in the presence of both co-channel interference and thermal noise, where interferers are spatially distributed following a Poisson distribution. In our numerical results, it is observed that the maximum random access transport capacity is achieved at a specific spatial density of transmitting nodes due to the throughput-reliability tradeoff as the number of transmitting nodes (=interferers) increases. We compute the optimal spatial density of transmitting nodes that maximize their random access transport capacity. As a result, we can obtain the actual random access transport capacity of multihop AF relaying and predict the maximum number of transmitting nodes per unit area to maximize their performance.
KW - Amplify-and-forward (AF)
KW - Interference
KW - Multihop relaying
KW - Poisson network
KW - Random access transport capacity
KW - Throughput-reliability tradeoff
UR - http://www.scopus.com/inward/record.url?scp=84878104790&partnerID=8YFLogxK
U2 - 10.1186/1687-1499-2013-104
DO - 10.1186/1687-1499-2013-104
M3 - Article
AN - SCOPUS:84878104790
VL - 2013
JO - Eurasip Journal on Wireless Communications and Networking
JF - Eurasip Journal on Wireless Communications and Networking
SN - 1687-1472
IS - 1
M1 - 104
ER -