Abstract
Effective channel control with low contact resistance can be accomplished through selective ion implantation in Si and III-V semiconductor technologies; however, this approach cannot be adopted for ultrathin van der Waals materials. Herein, we demonstrate a self-aligned fabrication process based on self-terminated p-doping and layer-by-layer chemical etching to achieve low contact resistance as well as a high on/off current ratio in ultrathin tungsten diselenide (WSe2) field-effect transistors (FETs). Damage-free layer-by-layer thinning of the WSe2 channel is repeated up to a thickness of approximately 1.4 nm, while maintaining the selectively p-doped source/drain regions. The device characteristics of the recessed-channel WSe2 FET are systematically monitored during this layer-by-layer recess-channel process. The WSe2 etching rate is estimated to be 2-3 layers per cycle of oxidation and subsequent chemical etching. The self-terminated tungsten oxide (WOX) layer grown through ultraviolet-ozone treatment induces robust p-doping in the neighboring (or underlying) WSe2 through the electron withdrawal mechanism, which remains in the source/drain regions after channel oxide removal. The adopted self-terminated and self-aligned recess-channel process for ultrathin WSe2 FETs enables the realization of a high on/off output current ratio (>108) and field-effect mobility (190 cm2/V·s), while maintaining low contact resistance (0.9-6.1 kω·μm) without a postannealing process. The proposed facile and reproducible doping and atomic-layer-etching method for the fabrication of a recessed-channel FET with an ultrathin body can be helpful for high-performance two-dimensional semiconductor devices and is applicable to post-Si complementary metal-oxide semiconductor devices.
Original language | English |
---|---|
Journal | ACS nano |
DOIs | |
Publication status | Accepted/In press - 2022 |
Externally published | Yes |
Keywords
- chemical etch
- contact resistance
- field-effect transistors
- recess-channel
- tungsten diselenide
- van der Waals materials
ASJC Scopus subject areas
- Materials Science(all)
- Engineering(all)
- Physics and Astronomy(all)