Reconstruction of fiber trajectories via population-based estimation of local orientations

Pew Thian Yap, John H. Gilmore, Weili Lin, Dinggang Shen

Research output: Contribution to journalArticle

Abstract

White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For tract-based comparison of a population of images, a common approach is to first generate an atlas by averaging, after spatial normalization, all images in the population, and then perform tractography using the constructed atlas. The reconstructed fiber trajectories form a common geometry onto which diffusion properties of each individual subject can be projected based on the corresponding locations in the subject native space. However, in the case of High Angular Resolution Diffusion Imaging (HARDI), where modeling fiber crossings is an important goal, the above-mentioned averaging method for generating an atlas results in significant error in the estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of performing tractography at a population level. Our method entails determining a bipolar Watson distribution at each voxel location based on information given by all images in the population, giving us not only the local principal orientations of the fiber pathways, but also confidence levels of how reliable these orientations are across subjects. The distribution field is then fed as an input to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are consistent across all images in the population. We observe that the proposed method, called PopTract, results in significantly better preservation of fiber crossings, and hence yields better trajectory reconstruction in the atlas space.

Original languageEnglish
Pages (from-to)133-140
Number of pages8
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume6892 LNCS
Issue numberPART 2
DOIs
Publication statusPublished - 2011 Oct 11
Externally publishedYes

Fingerprint

Trajectories
Fiber
Trajectory
Fibers
Atlas
High Angular Resolution
Fiber Orientation
Averaging Method
Confidence Level
Voxel
Fiber reinforced materials
Preservation
Normalization
Averaging
Pathway
Brain
Imaging
Imaging techniques
Geometry
Modeling

ASJC Scopus subject areas

  • Computer Science(all)
  • Theoretical Computer Science

Cite this

@article{d7b97b001f894b7fb793b6bf7bf28b79,
title = "Reconstruction of fiber trajectories via population-based estimation of local orientations",
abstract = "White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For tract-based comparison of a population of images, a common approach is to first generate an atlas by averaging, after spatial normalization, all images in the population, and then perform tractography using the constructed atlas. The reconstructed fiber trajectories form a common geometry onto which diffusion properties of each individual subject can be projected based on the corresponding locations in the subject native space. However, in the case of High Angular Resolution Diffusion Imaging (HARDI), where modeling fiber crossings is an important goal, the above-mentioned averaging method for generating an atlas results in significant error in the estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of performing tractography at a population level. Our method entails determining a bipolar Watson distribution at each voxel location based on information given by all images in the population, giving us not only the local principal orientations of the fiber pathways, but also confidence levels of how reliable these orientations are across subjects. The distribution field is then fed as an input to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are consistent across all images in the population. We observe that the proposed method, called PopTract, results in significantly better preservation of fiber crossings, and hence yields better trajectory reconstruction in the atlas space.",
author = "Yap, {Pew Thian} and Gilmore, {John H.} and Weili Lin and Dinggang Shen",
year = "2011",
month = "10",
day = "11",
doi = "10.1007/978-3-642-23629-7_17",
language = "English",
volume = "6892 LNCS",
pages = "133--140",
journal = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
issn = "0302-9743",
publisher = "Springer Verlag",
number = "PART 2",

}

TY - JOUR

T1 - Reconstruction of fiber trajectories via population-based estimation of local orientations

AU - Yap, Pew Thian

AU - Gilmore, John H.

AU - Lin, Weili

AU - Shen, Dinggang

PY - 2011/10/11

Y1 - 2011/10/11

N2 - White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For tract-based comparison of a population of images, a common approach is to first generate an atlas by averaging, after spatial normalization, all images in the population, and then perform tractography using the constructed atlas. The reconstructed fiber trajectories form a common geometry onto which diffusion properties of each individual subject can be projected based on the corresponding locations in the subject native space. However, in the case of High Angular Resolution Diffusion Imaging (HARDI), where modeling fiber crossings is an important goal, the above-mentioned averaging method for generating an atlas results in significant error in the estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of performing tractography at a population level. Our method entails determining a bipolar Watson distribution at each voxel location based on information given by all images in the population, giving us not only the local principal orientations of the fiber pathways, but also confidence levels of how reliable these orientations are across subjects. The distribution field is then fed as an input to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are consistent across all images in the population. We observe that the proposed method, called PopTract, results in significantly better preservation of fiber crossings, and hence yields better trajectory reconstruction in the atlas space.

AB - White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For tract-based comparison of a population of images, a common approach is to first generate an atlas by averaging, after spatial normalization, all images in the population, and then perform tractography using the constructed atlas. The reconstructed fiber trajectories form a common geometry onto which diffusion properties of each individual subject can be projected based on the corresponding locations in the subject native space. However, in the case of High Angular Resolution Diffusion Imaging (HARDI), where modeling fiber crossings is an important goal, the above-mentioned averaging method for generating an atlas results in significant error in the estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of performing tractography at a population level. Our method entails determining a bipolar Watson distribution at each voxel location based on information given by all images in the population, giving us not only the local principal orientations of the fiber pathways, but also confidence levels of how reliable these orientations are across subjects. The distribution field is then fed as an input to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are consistent across all images in the population. We observe that the proposed method, called PopTract, results in significantly better preservation of fiber crossings, and hence yields better trajectory reconstruction in the atlas space.

UR - http://www.scopus.com/inward/record.url?scp=80053482172&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053482172&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-23629-7_17

DO - 10.1007/978-3-642-23629-7_17

M3 - Article

C2 - 21995022

AN - SCOPUS:80053482172

VL - 6892 LNCS

SP - 133

EP - 140

JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SN - 0302-9743

IS - PART 2

ER -