Rectification in tunneling junctions: 2,2'-bipyridyl-terminated n -alkanethiolates

Hyo Jae Yoon, Kung Ching Liao, Matthew R. Lockett, Sen Wai Kwok, Mostafa Baghbanzadeh, George M. Whitesides

Research output: Contribution to journalArticle

57 Citations (Scopus)

Abstract

Molecular rectification is a particularly attractive phenomenon to examine in studying structure-property relationships in charge transport across molecular junctions, since the tunneling currents across the same molecular junction are measured, with only a change in the sign of the bias, with the same electrodes, molecule(s), and contacts. This type of experiment minimizes the complexities arising from measurements of current densities at one polarity using replicate junctions. This paper describes a new organic molecular rectifier: a junction having the structure AgTS/S(CH2)11-4-methyl-2,2'-bipyridyl//Ga2O3/EGaIn (AgTS: template-stripped silver substrate; EGaIn: eutectic gallium-indium alloy) which shows reproducible rectification with a mean r+ = |J(+1.0 V)|/|J(-1.0 V)| = 85 ± 2. This system is important because rectification occurs at a polarity opposite to that of the analogous but much more extensively studied systems based on ferrocene. It establishes (again) that rectification is due to the SAM, and not to redox reactions involving the Ga2O3 film, and confirms that rectification is not related to the polarity in the junction. Comparisons among SAM-based junctions incorporating the Ga2O3/EGaIn top electrode and a variety of heterocyclic terminal groups indicate that the metal-free bipyridyl group, not other features of the junction, is responsible for the rectification. The paper also describes a structural and mechanistic hypothesis that suggests a partial rationalization of values of rectification available in the literature.

Original languageEnglish
Pages (from-to)17155-17162
Number of pages8
JournalJournal of the American Chemical Society
Volume136
Issue number49
DOIs
Publication statusPublished - 2014 Dec 10

ASJC Scopus subject areas

  • Chemistry(all)
  • Catalysis
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Rectification in tunneling junctions: 2,2'-bipyridyl-terminated n -alkanethiolates'. Together they form a unique fingerprint.

  • Cite this

    Yoon, H. J., Liao, K. C., Lockett, M. R., Kwok, S. W., Baghbanzadeh, M., & Whitesides, G. M. (2014). Rectification in tunneling junctions: 2,2'-bipyridyl-terminated n -alkanethiolates. Journal of the American Chemical Society, 136(49), 17155-17162. https://doi.org/10.1021/ja509110a