TY - JOUR
T1 - Recurrent glioblastomas reveal molecular subtypes associated with mechanistic implications of drug-resistance
AU - Kwon, So Mee
AU - Kang, Shin Hyuk
AU - Park, Chul Kee
AU - Jung, Shin
AU - Park, Eun Sung
AU - Lee, Ju Seog
AU - Kim, Se Hyuk
AU - Woo, Hyun Goo
N1 - Publisher Copyright:
© 2015 Kwon et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original author and source are credited.
PY - 2015/10/14
Y1 - 2015/10/14
N2 - Previously, transcriptomic profiling studies have shown distinct molecular subtypes of glioblastomas. It has also been suggested that the recurrence of glioblastomas could be achieved by transcriptomic reprograming of tumors, however, their characteristics are not yet fully understood. Here, to gain the mechanistic insights on the molecular phenotypes of recurrent glioblastomas, gene expression profiling was performed on the 43 cases of glioblastomas including 15 paired primary and recurrent cases. Unsupervised clustering analyses revealed two subtypes of G1 and G2, which were characterized by proliferation and neuron-like gene expression traits, respectively. While the primary tumors were classified as G1 subtype, the recurrent glioblastomas showed two distinct expression types. Compared to paired primary tumors, the recurrent tumors in G1 subtype did not show expression alteration. By contrast, the recurrent tumors in G2 subtype showed expression changes from proliferation type to neuron-like one. We also observed the expression of stemnessrelated genes in G1 recurrent tumors and the altered expression of DNA-repair genes (i.e., AURK, HOX, MGMT, and MSH6) in the G2 recurrent tumors, which might be responsible for the acquisition of drug resistance mechanism during tumor recurrence in a subtype-specific manner. We suggest that recurrent glioblastomas may choose two different strategies for transcriptomic reprograming to escape the chemotherapeutic treatment during tumor recurrence. Our results might be helpful to determine personalized therapeutic strategy against heterogeneous glioma recurrence.
AB - Previously, transcriptomic profiling studies have shown distinct molecular subtypes of glioblastomas. It has also been suggested that the recurrence of glioblastomas could be achieved by transcriptomic reprograming of tumors, however, their characteristics are not yet fully understood. Here, to gain the mechanistic insights on the molecular phenotypes of recurrent glioblastomas, gene expression profiling was performed on the 43 cases of glioblastomas including 15 paired primary and recurrent cases. Unsupervised clustering analyses revealed two subtypes of G1 and G2, which were characterized by proliferation and neuron-like gene expression traits, respectively. While the primary tumors were classified as G1 subtype, the recurrent glioblastomas showed two distinct expression types. Compared to paired primary tumors, the recurrent tumors in G1 subtype did not show expression alteration. By contrast, the recurrent tumors in G2 subtype showed expression changes from proliferation type to neuron-like one. We also observed the expression of stemnessrelated genes in G1 recurrent tumors and the altered expression of DNA-repair genes (i.e., AURK, HOX, MGMT, and MSH6) in the G2 recurrent tumors, which might be responsible for the acquisition of drug resistance mechanism during tumor recurrence in a subtype-specific manner. We suggest that recurrent glioblastomas may choose two different strategies for transcriptomic reprograming to escape the chemotherapeutic treatment during tumor recurrence. Our results might be helpful to determine personalized therapeutic strategy against heterogeneous glioma recurrence.
UR - http://www.scopus.com/inward/record.url?scp=84949008680&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0140528
DO - 10.1371/journal.pone.0140528
M3 - Article
C2 - 26466313
AN - SCOPUS:84949008680
SN - 1932-6203
VL - 10
JO - PLoS One
JF - PLoS One
IS - 10
M1 - e0140528
ER -