TY - JOUR
T1 - Refined exposure assessment for three active ingredients of humidifier disinfectants
AU - Lee, Jong Hyeon
AU - Kang, Hyun Joong
AU - Seol, Hwi Soo
AU - Kim, Chan Kook
AU - Yoon, Seung Ki
AU - Gwack, Jin
AU - Kim, Yong Hwa
AU - Kwon, Jung Hwan
PY - 2013
Y1 - 2013
N2 - Exposure assessment for three major active ingredients used for humidifier disinfectants, polyhexamethylene guanidine (PHMG), oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride (PGH), and 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) mixture, was conducted in a bedroom using an air sampler for a refined risk assessment. The experimental site was selected to reflect consumer exposure conditions. Aerosols formed by a humidifier were sampled during 8 hr at 7.5 L/min. Absorbed PHMG and PGH by the sampler were quantified using a spectrophotometric method, and high performance liquid chromatography-ultraviolet detection was used for CMIT/MIT. Three exposure scenarios were assumed for adding humidifier disinfectants to the humidifier water at 1, 2, and 10 times the volume recommended by the product suppliers, and the humidifier was on at its maximum rate of producing aerosols in order to consider reasonable worst-cases. The sampled mass of PHMG and PGH ranged 200 to 2,800 μg and 140 to 1,900 μg, respectively, under different exposure conditions, whereas the absorbed mass of CMIT/MIT was barely detected at the detection limit of 0.11/0.29 mg/L, only at 10 times the recommended level. The resulting risk quotients for PHMG and PGH ranged 1,400 to 20,000 and 1,000 to 13,000, indicating that health risks could be significant. For CMIT/MIT mixture, risk quotients were much smaller than estimated by assuming that they are conservative in the indoor environment, probably due to oxidative reactions. The refined exposure assessment presented here may provide a useful tool for assessing risks posed by active ingredients in spray-type biocidal products.
AB - Exposure assessment for three major active ingredients used for humidifier disinfectants, polyhexamethylene guanidine (PHMG), oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride (PGH), and 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) mixture, was conducted in a bedroom using an air sampler for a refined risk assessment. The experimental site was selected to reflect consumer exposure conditions. Aerosols formed by a humidifier were sampled during 8 hr at 7.5 L/min. Absorbed PHMG and PGH by the sampler were quantified using a spectrophotometric method, and high performance liquid chromatography-ultraviolet detection was used for CMIT/MIT. Three exposure scenarios were assumed for adding humidifier disinfectants to the humidifier water at 1, 2, and 10 times the volume recommended by the product suppliers, and the humidifier was on at its maximum rate of producing aerosols in order to consider reasonable worst-cases. The sampled mass of PHMG and PGH ranged 200 to 2,800 μg and 140 to 1,900 μg, respectively, under different exposure conditions, whereas the absorbed mass of CMIT/MIT was barely detected at the detection limit of 0.11/0.29 mg/L, only at 10 times the recommended level. The resulting risk quotients for PHMG and PGH ranged 1,400 to 20,000 and 1,000 to 13,000, indicating that health risks could be significant. For CMIT/MIT mixture, risk quotients were much smaller than estimated by assuming that they are conservative in the indoor environment, probably due to oxidative reactions. The refined exposure assessment presented here may provide a useful tool for assessing risks posed by active ingredients in spray-type biocidal products.
KW - Air sampler
KW - Chloromethyl/methyl isothiazolinone (CMIT/MIT)
KW - Indoor air
KW - Polyhexmethylene biguanidine (PHMG)
KW - Risk assessment
UR - http://www.scopus.com/inward/record.url?scp=84891086016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891086016&partnerID=8YFLogxK
U2 - 10.4491/eer.2013.18.4.253
DO - 10.4491/eer.2013.18.4.253
M3 - Article
AN - SCOPUS:84891086016
VL - 18
SP - 253
EP - 257
JO - Environmental Engineering Research
JF - Environmental Engineering Research
SN - 1226-1025
IS - 4
ER -