Relaying Strategies for Wireless-Powered MIMO Relay Networks

Yang Huang, Bruno Clerckx

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)


This paper investigates relaying schemes in an amplify-and-forward multiple-input multiple-output relay network, where an energy-constrained relay harvests wireless power from the source information flow and can be further aided by an energy flow (EF) in the form of a wireless power transfer at the destination. However, the joint optimization of the relay matrix and the source precoder for the EF-assisted (EFA) and the non-EFA (NEFA) schemes is intractable. The original rate maximization problem is transformed into an equivalent weighted mean square error minimization problem and optimized iteratively, where the global optimum of the nonconvex source precoder subproblem is achieved by semidefinite relaxation and rank reduction. The iterative algorithm finally converges. Then, the simplified EFA and NEFA schemes are proposed based on channel diagonalization, such that the matrices optimizations can be simplified to power optimizations. Closed-form solutions can be achieved. Simulation results reveal that the EFA schemes can outperform the NEFA schemes. In addition, deploying more antennas at the relay increases the dimension of the signal space at the relay. Exploiting the additional dimension, the EF leakage in the information detecting block can be nearly separated from the information signal, such that the EF leakage can be amplified with a small coefficient.

Original languageEnglish
Article number7486134
Pages (from-to)6033-6047
Number of pages15
JournalIEEE Transactions on Wireless Communications
Issue number9
Publication statusPublished - 2016 Sep


  • MIMO relay
  • Wireless power harvesting
  • amplify-and-forward (AF)

ASJC Scopus subject areas

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Applied Mathematics


Dive into the research topics of 'Relaying Strategies for Wireless-Powered MIMO Relay Networks'. Together they form a unique fingerprint.

Cite this