TY - JOUR
T1 - Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat
T2 - Mediation by spinal opioid receptors
AU - Kim, Ji Hoon
AU - Min, Byung Il
AU - Na, Heung Sik
AU - Park, Dong Suk
N1 - Funding Information:
This study was supported by a grant of the Oriental Medicine R and D project, Ministry of Health and Welfare, Republic of Korea (HMP-00-CO-01-0001).
PY - 2004/2/20
Y1 - 2004/2/20
N2 - The relieving effects of electroacupuncture (EA) on mechanical allodynia and its mechanism related to the spinal opioid system were investigated in a rat model of neuropathic pain. To produce neuropathic pain in the tail, the right superior caudal trunk was resected between the S1 and S2 spinal nerves. Two weeks after the surgery, EA stimulation (2 or 100 Hz, 0.3 ms, 0.2-0.3 mA) was delivered to Zusanli (ST36) for 30 min. The degree of mechanical allodynia was evaluated quantitatively by touching the tail with von Frey hair (2.0 g) at 10 min intervals. These rats were then subjected to an i.t. injection with one of the three specific opioid agonists in successive ways: the mu agonist (DAMGO 25, 50 and 100 pmol), the delta agonist (DADELT II 0.5, 1 and 2 nmol), and the kappa agonist (U50488H 5, 10 and 20 nmol) separated by 10 min in cumulative doses. During 30 min of EA stimulation, specific opioid antagonists were subjected to i.t. injection: the mu antagonist (β-FNA 5, 10 and 20 nmol), the delta antagonist (naltrindole 5, 10 and 20 nmol), and the kappa antagonist (nor-BNI 3, 6 and 12 nmol) separated by 10 min in cumulative doses. As a result, EA reduced the behavioral signs of mechanical allodynia. Two Hz EA induced a robust and longer lasting effect than 100 Hz. All three opioid agonists also showed relieving effects on mechanical allodynia. However, nor-BNI could not block the EA effects on mechanical allodynia, whereas β-FNA or naltrindole significantly blocked EA effects. These results suggest that the mu and delta, but not kappa, opioid receptors in the spinal cord of the rat, play important roles in mediating relieving effects on mechanical allodynia induced by 2 Hz EA.
AB - The relieving effects of electroacupuncture (EA) on mechanical allodynia and its mechanism related to the spinal opioid system were investigated in a rat model of neuropathic pain. To produce neuropathic pain in the tail, the right superior caudal trunk was resected between the S1 and S2 spinal nerves. Two weeks after the surgery, EA stimulation (2 or 100 Hz, 0.3 ms, 0.2-0.3 mA) was delivered to Zusanli (ST36) for 30 min. The degree of mechanical allodynia was evaluated quantitatively by touching the tail with von Frey hair (2.0 g) at 10 min intervals. These rats were then subjected to an i.t. injection with one of the three specific opioid agonists in successive ways: the mu agonist (DAMGO 25, 50 and 100 pmol), the delta agonist (DADELT II 0.5, 1 and 2 nmol), and the kappa agonist (U50488H 5, 10 and 20 nmol) separated by 10 min in cumulative doses. During 30 min of EA stimulation, specific opioid antagonists were subjected to i.t. injection: the mu antagonist (β-FNA 5, 10 and 20 nmol), the delta antagonist (naltrindole 5, 10 and 20 nmol), and the kappa antagonist (nor-BNI 3, 6 and 12 nmol) separated by 10 min in cumulative doses. As a result, EA reduced the behavioral signs of mechanical allodynia. Two Hz EA induced a robust and longer lasting effect than 100 Hz. All three opioid agonists also showed relieving effects on mechanical allodynia. However, nor-BNI could not block the EA effects on mechanical allodynia, whereas β-FNA or naltrindole significantly blocked EA effects. These results suggest that the mu and delta, but not kappa, opioid receptors in the spinal cord of the rat, play important roles in mediating relieving effects on mechanical allodynia induced by 2 Hz EA.
KW - Acupuncture
KW - Mechanical allodynia
KW - Opioid
KW - Spinal cord
UR - http://www.scopus.com/inward/record.url?scp=1642575265&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2003.11.045
DO - 10.1016/j.brainres.2003.11.045
M3 - Article
C2 - 14751594
AN - SCOPUS:1642575265
VL - 998
SP - 230
EP - 236
JO - Brain Research
JF - Brain Research
SN - 0006-8993
IS - 2
ER -