Resveratrol regulates the cell viability promoted by 17β-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor α and insulin growth factor-1 receptor in BG-1 ovarian cancer cells

Nam Hee Kang, Kyung A. Hwang, Hye Rim Lee, Dal Woong Choi, Kyung Chul Choi

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Endocrine disrupting chemicals (EDCs) and estrogens appear to promote development of estrogen-dependent cancers, including breast and ovarian carcinomas. In this study, we evaluated the cell viability effect of BPA on BG-1 human ovarian cancer cells, along with the growth inhibitory effect of resveratrol (trans-3,4,5-trihydroxystilbene; RES), a naturally occurring phytoestrogen. In addition, we investigated the underlying mechanism(s) of BPA and RES in regulating the interaction between estrogen receptor alpha (ERα) and insulin-like growth factor-1 receptor (IGF-1R) signals, a non- genomic pathway induced by 17. β-estradiol (E2). BPA induced a significant increase in BG-1 cell growth and up-regulated mRNA levels of ERα and IGF-1R. In parallel with its mRNA level, the protein expression of ERα was induced, and phosphorylated insulin receptor substrate-1 (p-IRS-1), phosphorylated Akt1/2/3, and cyclin D1 were increased by BPA or E2. However, RES effectively reversed the BG-1 cell proliferation induced by E2 or BPA by inversely down-regulating the expressions of ERα, IGF-1R, p-IRS-1, and p-Akt1/2/3, and cyclin D1 at both transcriptional and translational levels. Taken together, these results suggest that RES is a novel candidate for prevention of tumor progression caused by EDCs, including BPA via effective inhibition of the cross-talk of ERα and IGF-1R signaling pathways.

Original languageEnglish
Pages (from-to)373-379
Number of pages7
JournalFood and Chemical Toxicology
Volume59
DOIs
Publication statusPublished - 2013 Sep 1

    Fingerprint

Keywords

  • Cell proliferation
  • ERα
  • Endocrine disrupting chemicals
  • IGF-1R
  • Resveratrol

ASJC Scopus subject areas

  • Food Science
  • Toxicology

Cite this