TY - JOUR
T1 - Role of at1g72910, at1g72940, and adr1-like 2 in plant immunity under nonsense-mediated mrna decay-compromised conditions at low temperatures
AU - Nasim, Zeeshan
AU - Fahim, Muhammad
AU - Gawarecka, Katarzyna
AU - Susila, Hendry
AU - Jin, Suhyun
AU - Youn, Geummin
AU - Ahn, Ji Hoon
N1 - Funding Information:
Funding: This work was supported by a National Research Foundation (NRF) of Korea grant funded by the Korean government (NRF-2017R1A2B3009624 to JHA) and Samsung Science and Technology Foundation under Project Number SSTF-BA1602-12.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16°C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16°C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.
AB - Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16°C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16°C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.
KW - Arabidopsis
KW - Immunity
KW - NLRs
KW - NMD
KW - Salicylic acid
KW - Temperature
UR - http://www.scopus.com/inward/record.url?scp=85094948650&partnerID=8YFLogxK
U2 - 10.3390/ijms21217986
DO - 10.3390/ijms21217986
M3 - Article
C2 - 33121126
AN - SCOPUS:85094948650
VL - 21
SP - 1
EP - 17
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1661-6596
IS - 21
M1 - 7986
ER -