Roles of protein arginine methyltransferases in the control of glucose metabolism

Hye Sook Han, Dahee Choi, Seri Choi, Seung Hoi Koo

Research output: Contribution to journalReview articlepeer-review

20 Citations (Scopus)


Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.

Original languageEnglish
Pages (from-to)435-440
Number of pages6
JournalEndocrinology and Metabolism
Issue number4
Publication statusPublished - 2014


  • Glucose metabolism
  • Liver
  • Protein-arginine N-methyltransferases

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Endocrinology


Dive into the research topics of 'Roles of protein arginine methyltransferases in the control of glucose metabolism'. Together they form a unique fingerprint.

Cite this